Índice general

1. INTRODUCCIÓN ... 1
 1.1. Volantes de inercia 1
 1.1.1. Almacenamiento de energía 1
 1.1.2. Elementos de un acumulador cinético 2
 1.1.3. El rotor ... 4
 1.1.4. Aplicaciones 5
 1.2. Estudio sobre el rotor 6
 1.2.1. Actuales direcciones de estudio 6
 1.2.2. Aplicaciones de bajo coste 7
 1.2.3. Objetivo de la tesis 8
 1.2.4. Alcance del estudio 8
 1.3. Principios básicos y estructura 9
 1.3.1. Origen de las tensiones 9
 1.3.2. Modelización para sistemas de cálculo 10
 1.3.3. Materiales aplicados 10
 1.3.4. Organización 11

2. TENSIONES MECÁNICAS 13
 2.1. Bases del análisis 13
 2.1.1. Origen de las tensiones mecánicas 13
 2.1.2. Elemento circular 14
 2.1.3. Esquema de resolución 16
 2.2. Fuerza centrífuga 17
<table>
<thead>
<tr>
<th>ÍNDICE GENERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1. Ecuaciones para un rotor con simetría circular</td>
</tr>
<tr>
<td>2.2.2. Propiedades del material para fibras orientadas tangencialmente</td>
</tr>
<tr>
<td>2.2.3. Ecuaciones para condiciones de tensión plana</td>
</tr>
<tr>
<td>2.2.4. Desplazamiento radial en tensión plana</td>
</tr>
<tr>
<td>2.2.5. Tensiones en condiciones de tensión plana</td>
</tr>
<tr>
<td>2.2.6. Punto singular de la solución en tensión plana</td>
</tr>
<tr>
<td>2.2.7. Ejemplo calculado en tensión plana</td>
</tr>
<tr>
<td>2.2.8. Cálculo en condiciones de deformación plana</td>
</tr>
<tr>
<td>2.2.9. Ejemplo calculado en deformación plana</td>
</tr>
<tr>
<td>2.2.10. Consideraciones para fibras axiales</td>
</tr>
<tr>
<td>2.2.11. Ejemplo de fibra axial</td>
</tr>
<tr>
<td>2.3. Aceleración angular</td>
</tr>
<tr>
<td>2.3.1. La aceleración angular en el rotor</td>
</tr>
<tr>
<td>2.3.2. Tensiones de la aceleración angular</td>
</tr>
<tr>
<td>2.3.3. Ejemplo de tensiones de aceleración</td>
</tr>
<tr>
<td>2.4. Condiciones de contorno interiores</td>
</tr>
<tr>
<td>2.4.1. Rigidez interior del rotor</td>
</tr>
<tr>
<td>2.4.2. Efecto de la rigidez radial sobre las tensiones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. TENSIONES RESIDUALES DEL MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Tensiones térmicas originadas en el curado</td>
</tr>
<tr>
<td>3.1.1. Generación de tensiones durante el curado</td>
</tr>
<tr>
<td>3.1.2. Deformaciones térmicas</td>
</tr>
<tr>
<td>3.1.3. Ecuaciones para condiciones de tensión plana</td>
</tr>
<tr>
<td>3.1.4. Desplazamiento radial en tensión plana</td>
</tr>
<tr>
<td>3.1.5. Tensiones en tensión plana</td>
</tr>
<tr>
<td>3.1.6. Punto singular de la solución en tensión plana</td>
</tr>
<tr>
<td>3.1.7. Ejemplo calculado en tensión plana</td>
</tr>
<tr>
<td>3.1.8. Cálculo en condiciones de deformación plana</td>
</tr>
<tr>
<td>3.1.9. Ejemplo calculado en deformación plana</td>
</tr>
<tr>
<td>3.1.10. Consideraciones para fibras axiales</td>
</tr>
</tbody>
</table>
ÍNDICE GENERAL

3.2. Tensiones residuales por hidratación ... 63
 3.2.1. Absorción de humedad ... 63
 3.2.2. Tensiones en condiciones de tensión plana 65
 3.2.3. Condiciones de deformación plana ... 67
 3.2.4. Combinación de tensiones residuales 69

4. MEJORA DE LOS SISTEMAS DE TENSIONES ... 71
 4.1. Estado de deformación plana modificada 71
 4.1.1. Limitaciones del cálculo en deformación plana 71
 4.1.2. Deformación axial constante (DAC) 73
 4.1.3. Método DAC aplicado a las tensiones centrífugas 74
 4.1.4. Condición de fuerza axial nula .. 77
 4.1.5. Ejemplo del DAC aplicado a las tensiones centrífugas 78
 4.1.6. Consideraciones para fibras axiales 80
 4.1.7. Método DAC aplicado a las tensiones residuales térmicas 81
 4.1.8. Método DAC aplicado a las tensiones residuales por hidratación 83
 4.2. Modelo unificado .. 85
 4.2.1. Unificación de modelos ... 85
 4.2.2. Zonas axiales ... 86
 4.2.3. Propiedades de las zonas libre y uniforme 87
 4.2.4. Zona de transición ... 89
 4.2.5. Función de progresión aproximada 92
 4.2.6. Rotores de longitud corta .. 98
 4.2.7. Consideraciones sobre la tensión cortante axial 99
 4.2.8. Modelo unificado ... 104
 4.2.9. Análisis de otros modelos ... 105

5. TENSIONES RESIDUALES EN ESTADOS NO UNIFORMES 107
 5.1. Tensiones de curado a temperatura no uniforme 107
 5.1.1. Curado a temperatura no uniforme .. 107
 5.1.2. La temperatura en función del radio 108
<table>
<thead>
<tr>
<th>Sección</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3</td>
<td>Desplazamiento radial</td>
<td>110</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Tensiones</td>
<td>113</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Punto singular</td>
<td>114</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Ejemplo</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Tensiones en estados transitorios de hidratación</td>
<td>118</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Absorción de humedad en un rotor</td>
<td>118</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Proceso de absorción de humedad</td>
<td>119</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Distribución aproximada de la humedad</td>
<td>119</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Desplazamiento radial</td>
<td>122</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Tensiones</td>
<td>125</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Puntos singulares</td>
<td>126</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Ejemplo</td>
<td>128</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Desarrollo de la formulación</td>
<td>131</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Condiciones de la formulación</td>
<td>132</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Desarrollo de la formulación general</td>
<td>133</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Puntos singulares</td>
<td>139</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Ejemplo</td>
<td>141</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Aplicación a modelos multicapa</td>
<td>142</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Rotores multicapa</td>
<td>142</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Nomenclatura y fórmulas</td>
<td>143</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Determinación de las constantes</td>
<td>144</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Ejemplo de rotor multicapa</td>
<td>147</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Resistencia ante la rotura</td>
<td>150</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Resistencias para el cálculo</td>
<td>150</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Resistencia individual</td>
<td>151</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Criterio de fallo</td>
<td>154</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Ejemplos</td>
<td>155</td>
</tr>
</tbody>
</table>
ÍNDICE GENERAL

7. PRETENSADO EN EL BOBINADO 159

7.1. Proceso de pretensado en el bobinado 159

7.1.1. Mejora de tensiones mediante las tensiones residuales 159
7.1.2. Tensiones residuales de bobinado 159
7.1.3. Ventajas del pretensado 161
7.1.4. Fabricación con pretensado 162
7.1.5. Rigidez radial 162

7.2. Modelo elástico 163

7.2.1. Proceso de estudio de las tensiones 163
7.2.2. Modelo analítico 164
7.2.3. Rotor de un solo material 165
7.2.4. Ejemplo de un rotor de un solo material 168
7.2.5. Rotor de varios materiales 170
7.2.6. Ejemplo de rotor con mandrino 173

7.3. Cálculo mediante elementos finitos 175

7.3.1. Limitación del cálculo directo 175
7.3.2. Método de cálculo 176
7.3.3. Ejemplo 177

7.4. Consideraciones viscoelásticas 179

7.4.1. Propiedades viscoelásticas 179
7.4.2. Resultados experimentales 180
7.4.3. Reducción a un sistema elástico 182
7.4.4. Curado in situ 183
7.4.5. Propuestas alternativas 184

8. PRETENSADO TÉRMICO 187

8.1. Rotor de material único curado en dos etapas 187

8.1.1. Estudios sobre las tensiones térmicas 187
8.1.2. Tensiones residuales en el curado a temperatura no uniforme 187
8.1.3. Proceso de curado en dos etapas 190
8.1.4. Consideraciones sobre el curado del material 191
ÍNDICE GENERAL

8.1.5. Tensiones residuales en un rotor homogéneo curado en dos etapas 192
8.2. Rotor con mandrino curado con pretensado térmico 194
 8.2.1. Tensiones en un rotor con mandrino 194
 8.2.2. Proceso de pretensado en un rotor con mandrino 195
 8.2.3. Tensiones de pretensado en un rotor con mandrino 197
 8.2.4. Aumento del pretensado térmico 199
8.3. Rotor de un solo material curado con pretensado térmico 200
 8.3.1. Proceso de curado en tres etapas 200
 8.3.2. Tensiones de pretensado en el curado en tres etapas 201
8.4. Consideraciones sobre el proceso de curado 203
 8.4.1. Coeficientes de dilatación térmica 203
 8.4.2. Dilataciones en el curado de la resina 204
 8.4.3. Influencia de las dilataciones sobre el pretensado térmico 206

9. DISEÑO DE VOLANTES DE INERCIA ... 209
 9.1. Rotores simples ... 209
 9.1.1. Condiciones del estudio .. 209
 9.1.2. Rotores de pared delgada .. 210
 9.1.3. Rotores de pared gruesa y material único 212
 9.1.4. Criterios de optimización .. 215
 9.2. Rotores multicapa .. 219
 9.2.1. Optimización de un rotor de dos capas 219
 9.2.2. Resultado del rotor de dos capas 220
 9.2.3. Rotor con capa elástica ... 222
 9.3. Rotores con pretensado térmico ... 225
 9.3.1. Rotor de fibra de vidrio .. 225
 9.3.2. Rotor de fibra de vidrio con mandrino 227

10. CONCLUSIONES ... 231
 10.1. Sistema analítico de cálculo .. 231
 10.2. Diseño de volantes de inercia ... 232
| 10.3. Futuras líneas de investigación | 233 |
Lista de símbolos

Símbolos generales

\[
\begin{align*}
a & \quad \text{parámetro de anisotropía} \\
a_H, a_R & \quad \text{parámetros generales de los coeficientes de dilatación térmica} \\
b & \quad \text{parámetro de fuerza centrífuga} \\
b_H, b_R & \quad \text{parámetros generales de los coeficientes de dilatación por hidratación} \\
c & \quad \text{humedad} \\
c_r & \quad \text{parámetro elástico} \\
c_0, \ldots c_5 & \quad \text{coeficiente de la ecuación humedad} \\
d & \quad \text{parámetro de la deformación axial} \\
e & \quad \text{parámetro térmico de temperatura uniforme} \\
e_1, e_2 & \quad \text{parámetros térmicos de temperatura no uniforme} \\
f_c & \quad \text{fuerza centrífuga unitaria} \\
f_\theta & \quad \text{fuerza unitaria de aceleración} \\
g & \quad \text{parámetro de humedad uniforme} \\
g_0, \ldots g_4 & \quad \text{parámetros de humedad no uniforme} \\
h & \quad \text{parámetro de aceleración} \\
k & \quad \text{constante elástica (con subíndices)} \\
l & \quad \text{longitud axial del rotor} \\
m & \quad \text{masa} \\
m & \quad \text{exponente de la tensión cortante radial-axial} \\
m & \quad \text{variables de integración por partes} \\
n & \quad \text{variables de integración por partes} \\
n & \quad \text{exponente de la tensión axial} \\
n_H, n_R & \quad \text{parámetros generales del módulo de Poisson} \\
p & \quad \text{presión} \\
p & \quad \text{parámetro elástico} \\
q & \quad \text{parámetro elástico} \\
r & \quad \text{radio} \\
r_c & \quad \text{radio de curado} \\
s & \quad \text{parámetro elástico} \\
t & \quad \text{espesor de pared del cilindro}
\end{align*}
\]

\footnote{No se incluyen los símbolos particulares usados en un solo apartado.}
ÍNDICE GENERAL

t_0, t_1 coeficientes de la ecuación de temperatura
u desplazamiento radial
v velocidad lineal
w desplazamiento axial
x función de integración
y función de integración
z posición axial

A constante de contorno
B constante de contorno
C constante de contorno de tensiones de aceleración
D constante de contorno de tensiones de aceleración
E módulo elástico (con subíndices)
E_c energía cinética
F fuerza (con subíndices)
G módulo de rigidez (con subíndices)
H_{A}, H_{B} coeficientes de la ecuación tensión tangencial
H_{0}, ..., H_{4} coeficientes polinómicos de la ecuación tensión tangencial
H_{l}, H_{ll} coeficientes logarítmicos de la ecuación tensión tangencial
M momento de un par de fuerzas
R_{A}, R_{B} coeficientes de la ecuación tensión radial
R_{0}, ..., R_{4} coeficientes polinómicos de la ecuación tensión radial
R_{l}, R_{ll} coeficientes logarítmicos de la ecuación tensión radial
T temperatura
T_{c} temperatura de curado
T_{f} temperatura final
U_{1}, ..., U_{5} coeficientes polinómicos de la ecuación desplazamiento radial
U_{l}, U_{ll} coeficientes logarítmicos de la ecuación desplazamiento radial
S superficie
V volumen
X resistencia longitudinal a tracción
X_{c} resistencia longitudinal a compresión
Y resistencia transversal a tracción
Y_{c} resistencia transversal a compresión

α coeficiente dilatación térmica (con subíndices)
α aceleración angular
α_{i}, α_{i}' parámetros de la matriz para multicapa
α_{H}, α_{R} parámetros de los coeficientes de dilatación térmica
β coeficientes de dilatación por hidratación (con subíndices)
β_{i}, β_{i}' parámetros de la matriz para multicapa
β_{H}, β_{R} parámetros de los coeficientes de dilatación por hidratación
γ deformación angular (con subíndices)
ε deformación unitaria (con subíndices)
κ disminución de módulo elástico radial en el bobinado
η parámetro de bobinado
λ coeficiente de conducción térmica
ÍNDICE GENERAL

\[\nu \] Módulo de Poisson (con subíndices)
\[\nu_H, \nu_R \] parámetro de relación elástica
\[\rho \] densidad
\[\sigma \] tensión (con subíndices)
\[\tau \] tensión cortante (con subíndices)
\[\upsilon \] desplazamiento tangencial
\[\varphi \] progresión TP-DAC
\[\omega \] velocidad angular

Subíndices

\[e \] exterior
\[i \] interior, número de capa
\[r \] dirección radial
\[w \] bobinado
\[z \] dirección axial
\[L \] dirección longitudinal a la fibra
\[T \] dirección transversal a la fibra
\[\theta \] dirección tangencial

Acrónimos

DAC deformación axial constante
DP deformación plana
MEF método de los elementos finitos
TP tensión plana
Capítulo 1

INTRODUCCIÓN

1.1. Volantes de inercia

1.1.1. Almacenamiento de energía

El volante de inercia es, básicamente, un sistema de almacenamiento de energía mecánica. Su principal característica frente a otros sistemas es la capacidad de absorber y ceder energía en poco tiempo. Es adecuado para sistemas mecánicos de ciclo energético discontinuo donde el periodo de tiempo sea muy corto, por lo que, tradicionalmente, se ha utilizado en motores y compresores alternativos, prensas y troqueladoras, etc.

En volantes tradicionales la cantidad de energía es menor que en otros sistemas de almacenamiento, pero en las últimas décadas se fabrican de materiales compuestos, lo que ha supuesto un aumento notable de su capacidad de almacenamiento. Esta innovación permite aplicarlos a campos en los que antes era totalmente impensable, por ejemplo, para almacenamiento de energía en automóviles, trenes o autobuses, satélites, etc.

Con este nuevo tipo de volantes se superan, en algunos aspectos, los sistemas clásicos de almacenamiento de energía. Por ejemplo, si se comparan con las tradicionales baterías químicas, los volantes ofrecen mayor potencia energética, tanto entregada como absorbida. Las baterías, debido a su proceso químico, son muy lentas en el proceso de carga y descarga, y si se pretende disminuir el tiempo su rendimiento desciende a valores del 20 o el 30%.

Para comparar los acumuladores cinéticos con otros sistemas de almacenamiento se utilizan los conceptos de densidad de energía y de densidad de potencia para expresar la capacidad de almacenar y de intercambiar energía por unidad de masa del acumulador. En la figura 1.1 se presenta un gráfico comparativo entre los volantes de inercia y algunos sistemas comunes aplicados a vehículos, obtenido de Kulkarni (1982) [30]. Se representan en coordenadas de densidad de energía, en Wh·kg⁻¹, y densidad de potencia, en W·kg⁻¹, las regiones de trabajo de los volantes, las baterías químicas, los motores de combustión interna y la célula de combustión.
Figura 1.1: Comparación de la densidad de potencia en función de la densidad de energía entre acumuladores de energía: volantes, motores de combustión interna, baterías y células de combustión, (Kulkarni [30]).

En la figura 1.1 se observa que la densidad de potencia en los volantes es muy elevada comparada con los diversos tipos de baterías químicas, incluso con los motores de combustión interna. En cambio, su densidad de energía es parecida a las baterías convencionales y es más baja que las baterías especiales y los motores. Por lo tanto, la principal característica de los volantes es su alta densidad de potencia.

Estos dos parámetros son muy genéricos y dan una visión global de los sistemas. Si se quiere una comparación completa hay que tener en cuenta otros factores, por ejemplo el número de ciclos de vida, los costes de fabricación y explotación, etc.

En la figura 1.1 se comparan los volantes con los sistemas más tradicionales pero existen otros sistemas alternativos, menos conocidos. Por ejemplo en Olszewski y otros (1988) [36] se comparan con el almacenamiento neumático y se deduce que la eficiencia y la densidad de energía es más alta en los volantes.

1.1.2. Elementos de un acumulador cinético

En las aplicaciones más clásicas los volantes reciben la energía a través de una transmisión mecánica, como si fueran un subconjunto de la máquina. En estos casos es habitual que tengan un multiplicador para aumentar las revoluciones, o incluso un variador para...
Cada vez es más frecuente que el volante incorpore un motor-generador eléctrico propio, de forma que configura una máquina aislada, conectada al exterior únicamente por cables eléctricos igual que una batería eléctrica. Su principal ventaja es la versatilidad porque se adapta fácilmente a cualquier necesidad energética mediante una adecuada regulación electrónica. Físicamente está formado por cinco elementos básicos, figura 1.2: (1) el rotor, (2) los cojinetes, (3) el motor-generador, (4) el recipiente de vacío y (5) el sistema de regulación.

1. El rotor es el elemento central del acumulador, donde se almacena propiamente la energía. Está formado principalmente por la masa cilíndrica y el eje central.

2. Los cojinetes de giro suelen ser simples rodamientos de alta velocidad. En modelos más sofisticados se montan cojinetes de levitación magnética que eliminan las pérdidas por rozamiento.

3. El motor-generador convierte la energía eléctrica en cinética y viceversa. Gira solidario al rotor y puede estar situado en paralelo con el disco, como se muestra en la figura 1.2, o concéntrico a la masa circular. En este último las bobinas estatóricas se sitúan sobre el eje central fijo y las rotóricas en el interior de la masa cilíndrica.

4. El conjunto está encerrado en un recipiente de protección que evita el acceso a los elementos móviles. En algunos casos se efectúa el vacío para eliminar el rozamiento aerodinámico.

5. Además de las partes mecánicas, incorpora un equipo de regulación de la potencia eléctrica que gestiona el flujo de energía con el exterior.

Este tipo de acumuladores, además de ser versátiles, minimizan las pérdidas por fricción y la energía se mantiene durante horas o incluso días. Por contra, tienen pérdidas en la entrada y salida de energía debido al rendimiento eléctrico del motor.
1.1.3. El rotor

En los rotores de la mayoría de aplicaciones actuales los metales de alta resistencia se sustituyen por materiales compuestos ligeros. Su baja densidad está compensada por el aumento de la velocidad de giro y es muy frecuente que su velocidad periférica supere la velocidad del sonido. Hay que tener en cuenta que la densidad del material afecta tanto a la energía cinética como a la tensión del material, porque ambas son función de la masa y del cuadrado de la velocidad. Por lo tanto, un material de alta densidad no es necesariamente mejor para un volante, su energía cinética máxima depende tanto de la masa como de la resistencia.

Para una misma geometría la energía cinética del rotor depende de la tensión admisible y es independiente de la densidad, como se expone en Genta (1985) [19]. En efecto, como se observa en la ecuación 1.1 la energía cinética E_c de un volante es función de la tensión admisible σ, del volumen de material V y de un coeficiente geométrico K.

$$E_c = K V \sigma$$ \hspace{1cm} (1.1)

La energía cinética depende, además del material, de la geometría del rotor. La fuerza centrífuga de una porción de masa se compensa con otra opuesta situada a 180° y el recorrido de la fuerza por el interior del rotor determina los puntos sometidos a tensión. Luego, la configuración geométrica de un rotor depende tanto de la posición de la masa como de las zonas intermedias preparadas para resistir el flujo de fuerzas. En este sentido, los rotores aplicados a volantes de inercia tienen unas determinadas configuraciones que optimizan los resultados. El artículo de Post y Post (1973) [41] hace un resumen de los tipos básicos de rotores y compara sus principales características.

Las configuraciones de los rotores metálicos no son útiles para materiales compuestos, como expone Genta (1985) [19]. Por ejemplo, la unión de la llanta con el eje mediante un disco de espesor axial variable, frecuente en los rotores metálicos, es perjudicial para los materiales compuestos. Esta configuración es excesivamente rígida y debe sustituirse por una unión elástica que permita cierta libertad radial a la llanta.

En Post y Post (1973) [41] y Genta (1985) [19] se presentan las configuraciones más típicas para los rotores de materiales compuestos, que se resumen en la figura 1.3.

Las configuraciones constructivamente más complejas tienen un funcionamiento mecánico más simple. En el modelo (a) el material de los radios es más elástico que en la llanta y permiten la necesaria deformación radial. En los casos (b) y (c) los aros curvados tienen también elasticidad radial. En el (f) la flexión del cubo en forma de z permite simultáneamente el desplazamiento axial y radial. En los casos (d) y (e) el rotor está formado por múltiples anillos, en el primero están unidos por una capa fina de material elastómero que permite un desplazamiento radial entre ellos y en el segundo cada anillo es de un material compuesto distinto, con elasticidad creciente en el interior.

1Se demuestra con las ecuaciones 9.1 y 9.2 del capítulo 9
1.1. VOLANTES DE INERCIA

Figura 1.3: Configuraciones de rotores para volantes y sus uniones con el eje.

1.1.4. Aplicaciones

La aplicación más destacable de los últimos años ha sido para el suministro de energía eléctrica a satélites en la industria aeroespacial. Durante las horas solares se almacena la energía proveniente de las placas fotovoltaicas, de forma similar a las baterías eléctricas pero con menos peso y mayor fiabilidad, Christopher y Beach (1998) [8].

En los trenes, tanto urbanos como interurbanos, trabajan igual que en los vehículos urbanos y se aplican tanto si el motor es eléctrico como de combustión interna, Herbst y otros (1998) [24]. De forma similar aunque para menos energía se aplica a los tranvías urbanos, Jefferson y Ackerman (1996) [25]. En cambio, en los trenes de alta velocidad es distinto, el acumulador debe estar situado en las estaciones porque su masa es muy grande comparada con la masa del tren.

Existen otras aplicaciones, por ejemplo en las redes de suministro de energía eléctrica para evitar los cortes de corriente, Koch (1997) [28]. Se utilizan como fuente complementaria durante las interrupciones de corta duración, con periodos de tiempo entre 10 y 60 segundos, según Darrelman (1999) [10].
1.2. Estudio sobre el rotor

1.2.1. Actuales direcciones de estudio

Para mejorar las aplicaciones de los volantes es necesario aumentar la energía específica del rotor, tanto por unidad de peso como de volumen. Pero en la mayoría de aplicaciones interesa disminuir los costes de fabricación para que sean competitivos con otros sistemas. Lo primero se consigue básicamente aumentando la velocidad de giro, para lo segundo, más complejo, se debe combinar la utilización de materiales baratos con la simplificación de los procesos de fabricación. En ambos casos es necesario estudiar nuevas formas para aumentar la resistencia del rotor.

Según Genta (1985) [19] los principales problemas en un rotor de material compuesto son la baja resistencia a tensión radial y la unión de la llanta con el eje interior. La tensión radial en el anillo sólo aparece si el espesor de pared es grande, tiene poca importancia en los volantes metálicos pero es muy perjudicial en materiales compuestos².

La unión con el eje es otro tema difícil en los volantes. Existen dos sistemas excluyentes: uniones muy rígidas y uniones elásticas. Las rígidas soportan la fuerza centrífuga mediante la tensión radial y se utilizan en volantes metálicos. Las elásticas permiten el desplazamiento radial u de la llanta, como se muestra en la figura 1.4, y la fuerza centrífuga sólo crea tensión tangencial. En los volantes de material compuesto se utilizan las uniones elásticas para disminuir la tensión radial.

Esta problemática ha generado diversas líneas de estudio. Una solución es dividir el rotor en anillos concéntricos unidos por finas capas de material muy elástico, como se muestra en el tipo (c) de la figura 1.3. En Genta (1985) [19] se describe y analiza esta solución, pero últimamente han aparecido nuevas investigaciones con combinaciones de materiales más complejas, por ejemplo en Gabrys y Bakis (1997) [17].

Una variante de la solución anterior es utilizar una matriz de módulo elástico muy bajo en los rotores fabricados de fibra bobinada. La elasticidad de la matriz permite unas

²Esta tensión radial será motivo de estudio en este trabajo.
1.2. ESTUDIO SOBRE EL Rotor

dilataciones en dirección radial, perpendicular a la fibra, que son suficientes para anular la tensión radial. Esta tipología también está ensayada en Gabrys y Bakis (1997) [17].

La solución más estudiada es el rotor híbrido multicapa, representado en la figura 1.3(e). Su proceso de distribución de tensiones y deformaciones está descrita de forma resumida en Kitade (2000) [27]. Actualmente se siguen estudiando nuevas formas de optimización mediante combinación de materiales y su posición radial, como en Ha y otros (1999) [21] y Ha y otros (2001) [22], en los que se maximiza la energía almacenada manteniendo las tensiones dentro del límite de resistencia del material.

Ha y otros (1998) [20] estudia la optimización a través de sistemas mecánicos de fabricación, utiliza múltiples anillos del mismo material montados con interferencia radial. Los resultados en los cálculos teóricos son buenos pero su dificultad está en la fabricación.

También existen estudios sobre la influencia del mandrin metálico en la creación de las tensiones residuales, White y Zhang (1993) [53], para aplicaciones con proceso de fabricación simple.

Las mejoras en los acumuladores cinéticos no se limitan al rotor. Se están estudiando otros campos, por ejemplo, en la suspensión magnética del rotor para disminuir el rozamiento y acumular energía durante periodos más largos, en los sistemas eléctricos de gestión de la energía para facilitar el intercambio, etc. Estos campos son muy interesante pero se apartan mucho del objetivo del presente trabajo.

1.2.2. Aplicaciones de bajo coste

Los objetivos en el estudio del rotor son distintos según las diversas aplicaciones. En los satélites lo más importante es minimizar el peso, debido al enorme coste de la puesta en órbita, y en menor medida el volumen. Los costes del material y de fabricación son poco importantes en comparación con aquéllos.

En las aplicaciones a vehículos móviles, automoción, trenes, etc. el peso y el volumen tienen una importancia limitada, en cambio los costes son esenciales debido a las grandes series de producción.

En las aplicaciones terrestres inmóviles, redes eléctricas, etc. el peso y el volumen no tienen importancia, porque se dispone de más espacio pero, en cambio, el coste es decisivo.

En estas dos últimas y, sobre todo, si se pretende conseguir que la aplicación sea generalizada, el acumulador debe tener un coste limitado. En las innovaciones no es suficiente avanzar en la cantidad de energía por unidad de peso, hay que utilizar procesos de fabricación más económicos.
Los rotores híbridos multicapa perfeccionados suelen tener unos costes de material elevados. Se fabrican con múltiples materiales de módulo elástico progresivo, en donde la fibra de vidrio y la de carbono son la más elástica y la más rígida respectivamente. Para conseguir una progresión uniforme es necesario utilizar materiales de elasticidad intermedia poco usuales y, por lo tanto, más caros, de forma que los costes de material pueden ser superiores incluso al del rotor construido exclusivamente en fibra de carbono.

1.2.3. Objetivo de la tesis

El estudio que se presenta en esta tesis está en la línea de conseguir que los acumuladores cinéticos sean asequibles a las aplicaciones más corrientes de la industria, mejorando las características de los rotores en las aplicaciones de bajo coste. En este sentido se estudian soluciones empleando materiales corrientes y procesos de fabricación simples, de forma que se puedan llevar a la práctica con medios económicos más asequibles.

Para ello se han propuesto dos objetivos. El primero es completar el sistema analítico para el cálculo de rotores fabricados con materiales compuestos, atendiendo a todos los tipos de cargas necesarias para el diseño y determinando las componentes de la tensión que influyen en el cálculo por resistencia.

El segundo es analizar el diseño de rotores para las aplicaciones de bajo coste. Se intentan proponer configuraciones alternativas para el rotor. Algunas de ellas necesitan procesos de fabricación particulares que se deben simular mediante un modelo de cálculo propio. Finalmente, partir de las limitaciones energéticas de los rotores simples se debe determinar la mejora en las prestaciones el rotor.

1.2.4. Alcance del estudio

En el análisis del rotor se elabora un sistema analítico de cálculo completo que permite estudiar distintos diseños de rotor. Para su desarrollo se parte de los principios básicos generales y se presentan cada uno de los pasos del proceso analítico hasta obtener la solución global. En él se tienen en cuenta todas las posibles cargas del rotor que afectan de forma significativa a su resistencia. Se determina el estado de tensiones completo en todos los puntos para su aplicación al cálculo de la resistencia.

En la predicción de la rotura se considera que para el estudio de los diseños es más importante el análisis comparativo de las diversas configuraciones que la obtención de valores absolutos muy precisos. Así, en el cálculo de resistencia, al igual que en la mayoría de autores, no se consideran los efectos de la fatiga, ni tampoco se entra en el estudio a fondo de los criterios de fallo estático. Estos dos temas serían motivo de trabajos posteriores cuando se apliquen a proyectos concretos.

Para las propiedades del material se toman los valores comunes aceptados entre los autores y para las propiedades especiales aplicadas en los nuevos métodos de fabricación se toman de resultados experimentales similares de otros autores. Los materiales compuestos tienen un comportamiento menos regular que los metales y sus propiedades pueden va-
1.3. PRINCIPIOS BÁSICOS Y ESTRUCTURA

La cantidad de energía almacenable está limitada principalmente por las tensiones internas del rotor, ya que en el resto de elementos no ofrecen excesivos problemas. Los cojinetes de apoyo sólo presentan limitaciones de velocidad si el peso es muy elevado, y el motor-generador y el sistema eléctrico no tienen problemas importantes en el límite de velocidad dentro de los rangos habituales, como en el caso de Ashley (1996) [2]. Si el rotor está dirigido a las aplicaciones de altas prestaciones esta problemática es muy distinta, como en Borneman y otros (1994) [4].

Las tensiones mecánicas están originadas principalmente por la fuerza centrífuga, aunque también por la aceleración angular, el efecto giroscópico, el peso propio, el desequilibrio de masas y las vibraciones, como se expone en Genta (1985) [19]. Estas últimas permanecen en ausencia de velocidad y, por lo tanto, no dependen del nivel de energía almacenada.

Las tensiones residuales están originadas por el propio material y pueden ser de dos tipos: las de curado o térmicas y las de hidratación, estudiadas en Springer y Tsai (1981) [47].
1.3.2. Modelización para sistemas de cálculo

El estudio de las tensiones en un rotor tiene dos partes: la primera calcular los límites de utilización de un rotor, o sea, los valores máximos de la velocidad y la aceleración, y la segunda, menos directa, conocer los parámetros más influyentes para proponer nuevas formas y optimizar el diseño. Para ello, se deducen las expresiones analíticas de las deformaciones y las tensiones y, paralelamente, se aplica el método de los elementos finitos sólo en algunos casos particulares.

El estudio mediante la formulación analítica permite entender los fenómenos internos que crean tensiones y, por lo tanto, analizar las causas de rotura del rotor. Se puede, entonces, valorar fácilmente la influencia de cada parámetro y las consecuencias de una posible variación. Con estos conocimientos es más rápido crear nuevos modelos con ciertas posibilidades de éxito.

Los modelos de elementos finitos aplicados a un rotor calculan las tensiones para una geometría concreta con resultados más completos y más precisos que los desarrollados en este trabajo, pero en la práctica es un método más laborioso y más lento para probar nuevas geometrías, como en el caso de Nagy y otros (1999) [35]. Además, la relación entre características finales y parámetros es menos evidente y, en consecuencia, las modificaciones se realizan casi por tanteo, Wu y otros (1995) [54].

En el presente estudio se analiza el comportamiento del rotor principalmente a través de las fórmulas analíticas, como hacen la mayoría de autores citados en la bibliografía. Se establecen los principios básicos y se deducen las ecuaciones que describen el comportamiento del rotor. En ellas se utilizan parámetros que sean lo más comprensibles posibles para analizar la causa de las tensiones. Las fórmulas finales se han simplificado al máximo y se componen de términos polinomiales en función del radio, en los que se agrupan los factores de las distintas cargas. En algunos casos, después de deducir una primera expresión basada en principios particulares, se amplía para generalizar su aplicación y optimizar el resultado.

Después de cada análisis se aplican las fórmulas a ejemplos concretos para entender la naturaleza del fenómeno y comprobar la coherencia de los resultados. Los ejemplos de las deducciones más significativas se complementan con cálculos mediante elementos finitos para verificar la correspondencia de los resultados.

1.3.3. Materiales aplicados

El estudio está orientado a los materiales compuestos con fibras en una sola dirección que son los usuales en los volantes de altas velocidades, como se ha descrito anteriormente. Se omite la formulación aplicada a materiales isótopos, muy comunes en los estudios clásicos, aunque se deducen como un caso particular de las ecuaciones generales. Para los ejemplos se utilizan los materiales compuestos más representativos en los rotores, la fibra de vidrio y fibra de carbono con matriz epoxi.

La fabricación de un rotor con estos tipos de materiales se realiza mediante bobinado
1.3. PRINCIPIOS BÁSICOS Y ESTRUCTURA

de una mecha de fibras sobre un mandrino. El rotor queda formado por fibras unidireccionales orientadas circularmente de forma que consigue una gran resistencia a las tensiones tangenciales. A esta orientación, en dirección tangencial, se la denomina "fibras a 0º", y se toma como referencia porque es la dirección natural.

También se contempla, como caso especial, que un rotor pueda contener fibras en la dirección axial y se denominan "fibras a 90º". El presente trabajo no se aplica a otras orientaciones con ángulos distintos a estos dos. En la bibliografía hay pocos estudios de rotores con fibras orientadas en direcciones distinta a estas dos, Ha y otros (1998) [20]

![Figura 1.5: Orientación de las fibras: 0º tangencial y 90º axial.](image)

Interesa que las fibras estén orientadas a 0º para resistir la fuerza centrífuga del rotor a través de la componente tangencial de la tensión. Las fibras a 90º no resisten tensiones tangenciales, ni las radiales, porque ambas direcciones son normales a esta dirección, sólo resisten tensiones axiales, que aparecen en algunos rotores de gran longitud.

1.3.4. Organización

El presente trabajo se compone de distintas fases de estudio y aplicación. En los seis primeros capítulos se deducen las ecuaciones que rigen el comportamiento de un rotor sometido a cargas. Los restantes, basándose en estas ecuaciones, se destinan a analizar y mejorar el diseño.

En los capítulos 2 y 3 se exponen los principios básicos del origen de las tensiones mecánicas y residuales respectivamente, y se deducen las ecuaciones clásicas que son la base del resto del estudio.

En los capítulos 4 y 5 se amplían las ecuaciones de los capítulos anteriores para mejorar el cálculo y ampliar sus aplicaciones. En el capítulo 4 se analizan y se perfeccionan los sistemas de cálculo y se propone uno nuevo que unifica los anteriores. El capítulo 5 es una ampliación del 3, en el cual se calculan las tensiones residuales que se crean bajo estados no uniformes de temperatura y humedad.

En el capítulo 6 se deduce una formulación general que unifica las tensiones de las distintas cargas, estudiadas en los capítulos anteriores, y que se aplica a rotores multicapa. También se determina la resistencia final del rotor que se utiliza para valorar el límite de un diseño.
Después del punto de vista puramente matemático el planteamiento del capítulo 6 podría haberse adoptado desde el capítulo 2, al menos en lo referente a los sistemas de cálculo tradicionales, pero se ha creído conveniente presentar el estudio de tensiones de forma gradual. Con ello se puede profundizar más en los aspectos técnicos de cada tipo de carga y dejar la formulación matemática global para el final.

En los capítulos 7 y 8 se estudian dos técnicas de fabricación para mejorar las prestaciones del rotor. En el capítulo 7 se elabora un sistema de cálculo de las tensiones de bobinado, se estudian sus limitaciones y se proponen posibles mejoras. En el 8 se propone un nuevo camino de mejora, aportación original respecto a la bibliografía, basado en una modificación del proceso de curado del material.

Finalmente, en el capítulo 9, se aplican los sistemas de cálculo anteriores y se exponen algunos parámetros para valorar el rendimiento energético de un rotor. Para concluir se determina el límite energético de las configuraciones clásicas y se comprueba la mejora que se obtiene aplicando las técnicas propuestas en los capítulos anteriores.
Capítulo 2
TENSIONES MECÁNICAS

2.1. Bases del análisis

2.1.1. Origen de las tensiones mecánicas

Las tensiones de origen mecánico son más importantes que las tensiones residuales originadas por el propio material. Están causadas, como se ha descrito en el apartado 1.3.1, por la fuerza centrífuga, la aceleración angular, el efecto girosócpico, el peso propio, el desequilibrio de masas y las vibraciones.

Las tensiones originadas por la fuerza centrífuga son totalmente internas al rotor y se orientan principalmente en dirección tangencial y radial. Sus valores son muy elevados y constituyen la causa más importante de rotura.

La aceleración angular genera tensiones cortantes debido al par motor. Suelen ser despreciables en el cálculo del rotor, aunque en algunos casos especiales, en los que interesa una rápida variación de energía almacenada, pueden llegar a ser importantes.

El volante de inercia de un acumulador cinético tiene un efecto girosócpico importante. Si está montado sobre un sistema móvil con cambios bruscos de dirección, por ejemplo en vehículos, se generan fuerzas que tienden a conservar la posición. Pero se reducen si el volante se apoya sobre soportes elásticos dotados de la libertad angular necesaria.

Las fuerzas del peso propio son muy pequeñas comparadas con las de inercia y en volantes de materiales compuestos generan unas tensiones totalmente despreciables.

El desequilibrio de masas crea una fuerza entre la zona desequilibrada del rotor y los cojinetes de apoyo. En un rotor de alta velocidad podrían ser muy importantes si no se controlan mediante una fabricación adecuada. Los sistemas de compensado de masas del rotor permiten mantener estas fuerzas dentro de unos límites tolerables.

Las tensiones generadas por vibraciones son alternas y podrían producir fatiga pero se procura que su valor sea mínimo. Las generadas por la dinámica del rotor son inapreciables, sólo existen pequeñas oscilaciones originadas por el motor. Las debidas a los modos
propios de vibración del rotor se tienen en cuenta durante el diseño y se procura que las frecuencias naturales estén lejanas de la velocidad de giro para evitar el acoplamiento con el desequilibrio residual. Finalmente, el eje de rotación se monta en la misma dirección que la gravedad para que la fuerza peso sea constante a lo largo de una vuelta.

Para valorar su importancia en un rotor, Genta (1983) [19] presenta una tabla de valores comparativos de las tensiones equivalentes respecto de la resistencia del material. Estos valores se refieren al punto más tensionado de un volante clásico formado por llanta y brazos y son sólo orientativos porque varían mucho con la configuración geométrica.

<table>
<thead>
<tr>
<th>Carga</th>
<th>(\sigma'/\sigma_{\text{máx}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerza de inercia</td>
<td>1/1,45</td>
</tr>
<tr>
<td>Momento giroscópico</td>
<td>1/20</td>
</tr>
<tr>
<td>Peso propio</td>
<td>1/150</td>
</tr>
<tr>
<td>Torsor de aceleración</td>
<td>1/1700</td>
</tr>
</tbody>
</table>

En la práctica las tensiones del momento giroscópico son despreciables si se apoya sobre un soporte elástico. Las del peso propio son pequeñas, especialmente en rotores de material compuesto, y son constantes a lo largo de una vuelta si el eje es vertical. En cambio, las de aceleración pueden ser elevadas en aplicaciones especiales con tiempo de aceleración pequeño. Las dos primeras no se tienen en cuenta en los trabajos consultados y esta última sólo en algunos, por ejemplo en Portnov y otros [40] (2004). Por lo tanto, en este trabajo se analizan sólo las tensiones de la fuerza centrífuga y las de aceleración.

2.1.2. Elemento circular

En los volantes de alta velocidad solamente se contemplan geometrías circulares con simetría axial. Antiguamente se construían llantas unidas al eje central mediante un número determinado de radios pero se ha demostrado que los resultados no son buenos para altas velocidades. También existen algunos modelos de volantes de configuración totalmente radial, sin llanta circular, pero tampoco son los óptimos.

Figura 2.1: Coordenadas cilíndricas del rotor y direcciones de las tensiones.
En el cálculo se utilizan coordenadas cilíndricas porque describen con más precisión y simplicidad la geometría y las cargas del rotor, y facilita la formulación analítica.

El análisis de las tensiones se desarrolla a partir del elemento diferencial de la figura 2.2. Inicialmente sólo se analizan las tensiones en el plano radial, las tensiones en dirección axial se introducirán más adelante. Se incluyen las tensiones normales, en direcciones tangencial σ_θ y radial σ_r, y la tensión cortante $\tau_{r\theta}$. En su interior se generan dos fuerzas de inercia: f_c debida a la velocidad de giro ω y f_θ a la aceleración angular α.

De la suma de fuerzas en dirección radial y circunferencial de dichas fuerzas se deducen las ecuaciones de equilibrio, 2.1

\[
\begin{align*}
\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{1}{r} (\sigma_r - \sigma_\theta) + f_c &= 0 \\
\frac{\partial \tau_{r\theta}}{\partial r} - \frac{1}{r} \frac{\partial \sigma_\theta}{\partial \theta} + \frac{2}{r} \tau_{r\theta} + f_\theta &= 0
\end{align*}
\]

Las dos fuerzas internas generadas por unidad de volumen están en función de la densidad del material ρ, y del radio r. Además, la fuerza centrífuga f_c es función de la velocidad angular ω, y f_θ de la aceleración angular α.

\[
f_c = \rho r \omega^2 \quad ; \quad f_\theta = \rho r \alpha
\]

A estas consideraciones de equilibrio de fuerzas hay que añadir las consideraciones geométricas o cinéticas. En los cuerpos circulares los desplazamientos y deformaciones en las direcciones tangencial y radial no son independientes entre sí, las deformaciones unitarias tangencial ε_θ, radial ε_r y angular $\gamma_{r\theta}$ se relacionan con los desplazamientos tangencial u y radial u de la figura 2.3 mediante las ecuaciones cinéticas 2.3
CAPÍTULO 2. TENSIONES MECÁNICAS

\[
\begin{align*}
\varepsilon_\theta &= \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{u}{r} \\
\varepsilon_r &= \frac{\partial u}{\partial r} \\
\gamma_{r\theta} &= \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r}
\end{align*}
\]

(2.3)

Figura 2.3: Desplazamientos: tangencial \(\upsilon \), radiales \(u \) y angular \(\gamma_{r\theta} \).

Es importante destacar que el desplazamiento radial \(u \) genera simultáneamente una deformación radial \(\varepsilon_r \) y una tangencial \(\varepsilon_\theta \), y es debido a la geometría cerrada del cilindro, en donde el perímetro es función del radio. Esta dependencia geométrica origina algunos efectos cruzados entre las tensiones tangencial y radial. Algunos son favorables, por ejemplo, la fuerza centrífuga, que es radial, genera también tensión tangencial, pero otros son perjudiciales, por ejemplo, una tensión tangencial que no sea proporcional al radio genera tensión radial. Esta dependencia complica el comportamiento del rotor y obliga a un estudio más profundo.

El desplazamiento axial en \(z \), en cambio, es geométricamente independientes de los desplazamientos tangenciales y radiales, únicamente se genera una pequeña deformación por efecto Poisson. De ahí que el comportamiento en la dirección axial sea menos importante.

2.1.3. Esquema de resolución

En el estudio de deformaciones y tensiones de origen mecánico se analizan por separado los efectos de la fuerza centrífuga y de la aceleración angular. Las tensiones creadas por cada una de ellas son independientes.

Ambos estudios se aplican primero para fibras orientadas tangencialmente (0°) y después a fibras axiales (90°). Las tangenciales son más importantes y, si no se indica lo contrario, se considera que todas las capas están orientadas en esta dirección. Las axiales son muy raras en volantes, sólo tienen interés en ciertas aplicaciones de multicapa como se ha comentado en el capítulo 1.

El cálculo de tensiones se realiza bajo las hipótesis de contorno clásicas: tensión plana y deformación plana. Primero se resuelve en condiciones de tensión plana y posteriormente
2.2. FUERZA CENTRÍFUGA

en deformación plana. La tensión plana, que considera una tensión axial nula, simula un volante de pequeña longitud, y la deformación plana, que considera una deformación axial nula, se utiliza para longitud grande. Este último caso se estudia más a fondo en el capítulo 4.

En todos los casos se sigue el mismo proceso de cálculo. Partiendo de las ecuaciones elásticas del material y de las ecuaciones cinéticas de la geometría se deducen las expresiones de las tensiones en función del desplazamiento radial u o del circunferencial v. Con estas tensiones y la ecuación de equilibrio de fuerzas se obtiene la ecuación diferencial del desplazamiento en función del radio, que una vez resuelta se sustituye en las ecuaciones de la tensión anteriores. Las ecuaciones finales permiten determinar el desplazamiento y las tensiones en función del radio r.

2.2. Fuerza centrífuga

La fuerza centrífuga es la fuente más importante de tensiones y requiere un estudio muy detallado. La optimización de la geometría de un rotor pasa en gran medida por la minimización de sus efectos sobre la resistencia, de manera que su análisis es el punto central del estudio de un volante de inercia.

2.2.1. Ecuaciones para un rotor con simetría circular

El comportamiento analítico del rotor se deduce de las ecuaciones de equilibrio de fuerzas 2.1 y de las ecuaciones cinéticas 2.3, que se simplifican notablemente en esta geometría.

Si la velocidad es constante y, por lo tanto, la aceleración angular es nula, la fuerza de la aceleración f_{θ} es cero. Además, si el rotor tiene simetría circular todos los parámetros son independientes de la posición angular y sus derivadas respecto de $\partial \theta$ son nulas, con lo que, las dos ecuaciones 2.1 quedan independientes, la primera con las tensiones normales, σ_θ y σ_r, y la segunda con la tensión cortante, $\tau_{r\theta}$.

En este caso, para el cálculo con fuerza centrífuga es suficiente considerar la primera ecuación, sin el término en $\partial \theta$

$$\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} (\sigma_r - \sigma_{\theta}) = -f_c$$ \hspace{1cm} (2.4)

En las ecuaciones cinéticas 2.3 la condición de simetría anula los siguientes términos: la derivada $\partial \theta$, el desplazamiento tangencial v y la deformación angular $\gamma_{r\theta}$. Por lo cual, las ecuaciones 2.3 se simplifican y se reducen a dos ecuaciones

$$\begin{cases} \varepsilon_\theta = \frac{u}{r} \\ \varepsilon_r = \frac{\partial u}{\partial r} = u_r \end{cases}$$ \hspace{1cm} (2.5)
En ellas las deformaciones, ε_θ y ε_r, son función solamente del desplazamiento radial u y de su derivada con respecto del radio u_r.

2.2.2. Propiedades del material para fibras orientadas tangencialmente

Si el rotor está sometido únicamente a fuerza centrífuga se pueden admitir ciertas simplificaciones en la ecuación constitutiva del material.

En la figura 2.2 se aplica solamente la fuerza centrífuga f_c y se crean las tensiones normales en dirección radial σ_r y en dirección tangencial σ_θ. La tensión axial σ_z depende del efecto Poisson y su valor es mucho menor que las otras, incluso, en rotores de poca longitud es prácticamente nula. Ésta será objeto de estudio más adelante, principalmente en el capítulo 4. Las tensiones cortantes se pueden considerar nulas: la tensión $\tau_{\theta r}$ es función sólo de la fuerza de aceleración f_θ, la tensión τ_{rz} es muy pequeña porque está creada por las variaciones de σ_z y la tensión $\tau_{z\theta}$ es nula a causa de la simetría del rotor sobre el eje axial z.

En estas condiciones el estudio del comportamiento del material se reduce a determinar las tres tensiones normales, tangencial θ, radial r y axial z, y sus deformaciones. Luego la ecuación elástica es

$$
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r \\
\varepsilon_z
\end{bmatrix} =
\begin{bmatrix}
1 & -\nu_{\theta r} & -\nu_{\theta z} \\
-\nu_{r \theta} & 1 & -\nu_{r z} \\
-\nu_{z \theta} & -\nu_{z r} & 1
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r \\
\sigma_z
\end{bmatrix}
$$

Cabe destacar que la matriz de elasticidad es simétrica y, en consecuencia, se cumplen las relaciones

$$
\frac{\nu_{r \theta}}{E_\theta} = \frac{\nu_{\theta r}}{E_r} \\
\frac{\nu_{z \theta}}{E_\theta} = \frac{\nu_{\theta z}}{E_z} \\
\frac{\nu_{z r}}{E_r} = \frac{\nu_{r z}}{E_z}
$$

Esta ecuación es válida para cualquier material anisotrópico y se puede simplificar con algunas igualdades en el caso concreto que sea ortótropo.

En los volantes de inercia, como se ha dicho anteriormente, el material del rotor es siempre ortótropo. Además, para resistir la fuerza centrífuga sus fibras se orientan a 0°, o sea, la dirección tangencial θ coincide con la longitudinal L de las fibras, y la radial r y la axial z con la transversal T, como se observa en la figura 2.4. En este trabajo se considerará que tienen esta dirección, excepto que no se diga lo contrario. También se considerará que las dos direcciones transversales son idénticas y se cumplen las igualdades
2.2. FUERZA CENTRÍFUGA

Figura 2.4: Orientación tangencial de las fibras (0°), direcciones: \(L \) longitudinal y \(T \) transversal a las fibras

\[
E_r = E_z; \quad \nu_{rz} = \nu_{zr}; \quad \nu_{\theta z} = \nu_{\theta r} \quad (2.8)
\]

Esta relación se comprueba según los coeficientes de Poisson de la figura 2.5

Figura 2.5: Coeficientes de Poisson en fibra a 0°

En la formulación analítica no se incluirán estas igualdades para no perder el origen de cada uno de los parámetros, a pesar de que simplificarían las ecuaciones 2.7 y 2.8. Sus valores se tendrán en cuenta en las ecuaciones finales al sustituir por las propiedades longitudinales o transversales de la fibra.

2.2.3. Ecuaciones para condiciones de tensión plana

Las ecuaciones anteriores se simplifican si se considera que el sistema cumple las condiciones de tensión plana en las direcciones \(\theta \) y \(r \). Su resolución es mucho más simple que el sistema global con todas las tensiones y no se pierde apenas precisión en los resultados cuando el rotor tiene poca longitud axial. Es el sistema utilizado por la mayoría de autores.

La ecuación elástica 2.6 queda reducida a los parámetros relativos a los ejes \(\theta \) y \(r \), porque esta condición supone que la tensión axial debe necesariamente ser nula, \(\sigma_z = 0 \), y la deformación axial no interviene en el cálculo. Luego, la ecuación queda reducida a
CAPÍTULO 2. TENSIONES MECÁNICAS

\[
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{E_\theta} & -\frac{\nu_\theta r}{E_r} \\
-\frac{\nu_r \theta}{E_\theta} & \frac{1}{E_r}
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix}
\] (2.9)

Para el desarrollo es útil disponer de las tensiones en función de las deformaciones

\[
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix} = \frac{E_\theta E_r}{1 - \nu_\theta r \nu_r \theta}
\begin{bmatrix}
\frac{1}{E_r} & \frac{\nu_\theta r}{E_\theta} \\
\nu_r \theta & \frac{1}{E_r}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r
\end{bmatrix}
\] (2.10)

A su vez las deformaciones están en función del desplazamiento radial según las ecuaciones cinéticas 2.5. Sustituyendo y simplificando algunas propiedades del material según las igualdades 2.7 se obtienen las ecuaciones básicas de las tensiones en función del desplazamiento radial

\[
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix} = \frac{E_\theta}{1 - \nu_\theta r \nu_r \theta}
\begin{bmatrix}
\nu_\theta r & \frac{1}{E_\theta} \\
\nu_r \theta & \frac{1}{E_r}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r
\end{bmatrix}
\] (2.11)

Estas tensiones junto con la derivada de la tensión radial \(\sigma_r\) respecto del radio, designada por \(\sigma_{r,r}\)

\[
\sigma_{r,r} = \frac{E_r}{1 - \nu_\theta r \nu_r \theta}
\begin{bmatrix}
\nu_r \theta & u_r \\
\nu_\theta r & \frac{1}{E_r}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r
\end{bmatrix}
\]

deben cumplir la ecuación de equilibrio 2.4, y se obtiene la ley de desplazamiento

\[
u_{rr} + \frac{1}{r} u_r - \frac{a^2}{r^2} u = b \ r
\] (2.12)

en la cual se han agrupado los factores constantes en dos parámetros, que se denominan \(a\) y \(b\), y se definen de la siguiente forma

\[
a = \sqrt{\frac{E_\theta}{E_r}} \ ; \quad b = -\frac{1 - \nu_\theta r \nu_r \theta}{E_r} \rho \omega^2
\] (2.13)

El parámetro \(a\) es función únicamente del material y representa el grado de anisotropía de las propiedades elásticas, en este caso del módulo elástico. Dicho parámetro tiene gran importancia para el desarrollo analítico y es un factor decisivo en las ecuaciones finales.
2.2. FUERZA CENTRÍFUGA

El \(b \) es función principalmente de la fuerza centrífuga, dada por el factor \(\rho \omega^2 \), y de algunas propiedades del material. No tiene un significado tan claro como el de \(a \), se ha definido de esta forma simplemente para agrupar términos y facilitar el proceso de resolución.

2.2.4. Desplazamiento radial en tensión plana

La función de desplazamiento radial \(u \) en función del radio se obtiene resolviendo la ecuación diferencial 2.12. El proceso tiene varias sustituciones que se presentan a continuación.

En primer lugar se aplica un cambio de variable clásico en la bibliografía que introduce una nueva variable \(y \)

\[
 u = y \left(r^{-a} + r^a \right) \tag{2.14}
\]

Con este cambio se elimina el sumando sin derivada de la ecuación 2.12 y queda de la forma

\[
y_{,rr}(r^{-a} + r^a) + y_{,r} \left[(1 - 2a)r^{-a-1} + (1 + 2a)r^{a-1} \right] = b r
\]

Aplicando un segundo cambio que sustituya la derivada por una nueva variable \(x \) se disminuye el orden de la ecuación diferencial

\[
y_{,r} = x \tag{2.15}
\]

con lo que el grado de la ecuación disminuye y queda un sólo término con derivada

\[
x_{,r} + \frac{(1 - 2a)r^{(-1-a)} + (1 + 2a)r^{(-1+a)}}{r^{-a} + r^a} x = b \frac{r}{r^{-a} + r^a}
\]

\[
\frac{1}{g(r)} \tag{2.16}
\]

La nueva ecuación es una función de \(x(r) \), en cual los factores independientes se agrupan en dos nuevas funciones de \(r \), \(g(r) \) y \(f(r) \), y su solución es la función estándar siguiente

\[
x = \frac{A'}{e \int g(r) \, dr} + \frac{\int f(r) e \int g(r) \, dr \, dr}{e \int g(r) \, dr} \tag{2.17}
\]

Cada término incluye varios factores que se operan individualmente, de forma sucesiva. Primero se integra la función \(g(r) \), que a su vez se separa en dos integrales, \(I_a \) e \(I_b \).
\[\int g(r) \, dr = \int_{I_a} \frac{1 - 2a}{(1 + r^{2a})^2} \, dr + \int_{I_b} \frac{(1 + 2a) r^{-1+2a}}{1 + r^{2a}} \, dr = (1 - 2a) \ln r + 2 \ln (1 + r^{2a}) \quad (2.18) \]

en donde las soluciones individuales son

\[I_a = \frac{(1 - 2a)}{-2a} \int \frac{-2a}{r^{2a} + 1} \, dr = \frac{1 - 2a}{-2a} \ln \frac{1}{r^{2a} + 1} \quad (2.19) \]

\[I_b = \frac{1 + 2a}{2a} \int \frac{2ar^{2a} - 1}{1 + r^{2a}} \, dr = \frac{1 + 2a}{2a} \ln (1 + r^{2a}) \quad (2.20) \]

El término exponencial se obtiene fácilmente debido a las funciones logarítmicas de la integral 2.18

\[e^{\int g(r) \, dr} = r^{1-2a} (1 + r^{2a})^2 \quad (2.21) \]

Por otra parte, el término independiente \(f(r) \) de la ecuación 2.16 se puede escribir en la forma

\[f(r) = b \frac{r^{1+a}}{1 + r^{2a}} \quad (2.22) \]

para simplificar los elementos de la integral del segundo sumando de la ecuación 2.17. A dicha integral se la denomina \(I_c \)

\[\int f(r) e^{\int g(r) \, dr} \, dr = b \int_{I_c} r^{2-a} (1 + r^{2a}) \, dr = b \left(\frac{r^{3-a}}{3 - a} + \frac{r^{3+a}}{3 + a} \right) \quad (2.23) \]

Sustituyendo estos términos en la ecuación 2.17 se obtiene la ecuación de la variable intermedia \(x \)

\[x = A' \frac{r^{2a-1}}{(1 + r^{2a})^2} + b \frac{r^{2a-1}}{(1 + r^{2a})^2} \left(\frac{r^{3-a}}{3 - a} + \frac{r^{3+a}}{3 + a} \right) \quad (2.24) \]

en la cual \(A' \) es la primera constante de integración. A su vez, integrando la función \(x \) se obtiene la variable \(y \) de la ecuación 2.15. Para su resolución se separa en dos integrales, denominadas \(I_1 \) y \(I_2 \), y se añade una segunda constante de integración \(B' \)
2.2. FUERZA CENTRÍFUGA

\[y = \int x \, dr = A' \int_{I_1} \frac{r^{2a-1}}{(1 + r^{2a})^2} dr + b \int_{I_2} \frac{r^{2a-1}}{(1 + r^{2a})^2} \left(\frac{r^{3-a}}{3-a} + \frac{r^{3+a}}{3+a} \right) dr \]

\[= A' \frac{-1}{2a (1 + r^{2a})} + b \left(\frac{r^{3+a}}{9 - a^3 (1 + r^{2a})} \right) + B' \]

La integral \(I_1 \) se resuelve por sustitución

\[I_1 = \frac{-1}{2a (1 + r^{2a})} \]

La integral \(I_2 \) se resuelve por partes definiendo los términos \(m \) y \(dn \). El primero coincide con el resultado de la integral \(I_c \) de la ecuación 2.23

\[
\begin{align*}
 m &= \frac{r^{3-a}}{3-a} + \frac{r^{3+a}}{3+a} \\
 dn &= \frac{r^{2a-1}}{(1 + r^{2a})^2} dr
\end{align*}
\]

\[\Rightarrow \quad dm = r^{2-a} (1 + r^{2a}) \, dr \]

\[I_2 = \frac{-1}{2a(1 + r^{2a})} \left(\frac{r^{3-a}}{3-a} + \frac{r^{3+a}}{3+a} \right) - \int \frac{-1}{2a} r^{2-a} \, dr = \frac{r^{3+a}}{(9 - a^3)(1 + r^{2a})} \]

Finalmente, deshaciendo el cambio inicial de la ecuación 2.14 se obtiene la ecuación del desplazamiento \(u \) en función del radio

\[u(r) = y \frac{1 + r^{2a}}{r^a} = -A' \frac{1}{2a} + b \frac{r^{3+a}}{9 - a^2} + B' \frac{1 + r^{2a}}{r^a} \]

Para simplificar la ecuación se redefinen las variables de integración en \(A \) y \(B \) y se agrupan los términos en \(r \) según las potencias \(r^{-a}, r^a \) y \(r^3 \)

\[u(r) = A \frac{1}{r^a} + B r^a + \frac{b}{9 - a^2} r^3 \]

Los dos primeros determinan la progresión del desplazamiento en el radio. Las constantes \(A \) y \(B \) se determinan por las condiciones de contorno en el radio interior y exterior, o en las fronteras entre capas si el rotor es multicapa. El tercero contiene la constante \(b \) definida en la ecuación 2.13 y representa la aportación de la fuerza centrífuga.

Se observa que el factor más decisivo para determinar el tipo de solución es el parámetro \(a \). Afecta a los tres términos de la ecuación y especialmente a los dos primeros. Está definido en la ecuación 2.13 y depende de la anisotropía de las propiedades elásticas del material en las direcciones radial y tangencial. Es un factor importante para las tensiones
finales porque determina la coherencia entre los desplazamientos de distintas zonas del rotor.

Si el material es isótropo el valor es \(a = 1 \), ecuación 2.13. Es el caso, por ejemplo, de los rotores de metal, utilizados en volantes de bajas prestaciones. Para este valor la ecuación del desplazamiento se reduce a la ecuación clásica

\[
\begin{align*}
\frac{d^2 u}{dr^2} &= \frac{1}{r} A + r B + \frac{b}{8} r^3 \\
\end{align*}
\] (2.30)

Ambas ecuaciones, 2.29 y 2.30, coinciden con las ecuaciones de la bibliografía, por ejemplo en Kitade (2000) [27] o en Timoshenko y Goodier (1970) [49].

Los desplazamientos radiales son aparentemente poco importantes para el diseño de un rotor, pero no es así. Su ecuación es necesaria dentro del proceso analítico para determinar las tensiones, y el valor de su pendiente en \(r \) influye sobre la tensión radial máxima. Además, el desplazamiento en el radio interior del rotor es muy importante para elegir el tipo de unión entre la llanta y el eje; cuanto mayor sea este desplazamiento más elástica debe ser la unión, como se verá en el apartado 2.4.2.

2.2.5. Tensiones en condiciones de tensión plana

Las tensiones, tangencial \(\sigma_\theta \) y radial \(\sigma_r \), en condiciones de tensión plana se obtienen sustituyendo el desplazamiento radial \(u \) y su derivada \(u_r \) en las ecuaciones de tensiones 2.11. La derivada en el radio del desplazamiento es

\[
\begin{align*}
u_r(r) &= -\frac{a}{r^{a+1}} A + a r^{a-1} B + \frac{3 b}{9 - a^2} r^2
\end{align*}
\] (2.31)

Agrupando términos el resultado queda de la siguiente forma

\[
\begin{align*}
\sigma_\theta(r) &= a^2 c_r \left[(1 - \nu_{\theta r}) \frac{1}{r^{a+1}} A + (1 + \nu_{\theta r}) a r^{a-1} B + \frac{1 + 3 \nu_{\theta r}}{9 - a^2} b r^2 \right] \\
\sigma_r(r) &= c_r \left[(\nu_{r \theta} - a) \frac{1}{r^{a+1}} A + (\nu_{r \theta} + a) r^{a-1} B + \frac{\nu_{r \theta} + 3}{9 - a^2} b r^2 \right]
\end{align*}
\] (2.32)

En ellas se utiliza la constante \(c_r \) para agrupar algunas propiedades del material

\[
c_r = \frac{E_r}{1 - \nu_{\theta r} \nu_{r \theta}} = \frac{E_\theta}{(a - \nu_{r \theta})(a + \nu_{r \theta})}
\] (2.33)

Esta constante no tiene ningún significado físico destacable, su único objeto es simplificar los términos de la ecuación. Con ella la constante \(b \) definida en 2.13 se puede escribir de forma simplificada.
2.2. FUERZA CENTRÍFUGA

\[b = -\frac{\rho \omega^2}{c_r} \]

(2.34)

Las ecuaciones de tensiones \(\sigma_\theta \) y \(\sigma_r \) tienen una estructura parecida a la del desplazamiento radial \(u \), ecuación 2.29. Las potencias en \(a \) ahora son \(r^{-a-1} \) y \(r^{a-1} \) y la del término con el factor de velocidad \(b \) es en \(r^2 \).

Es evidente que las tensiones en la dirección \(z \) son nulas por tratarse de un estado de tensión plana. La deformación axial \(\varepsilon_z \) definida dentro de la ecuación inicial 2.6 vale

\[\varepsilon_z = -\frac{\nu_{\theta\theta}}{E_\theta} \sigma_\theta - \frac{\nu_{rr}}{E_r} \sigma_r \]

(2.35)

Esta solución es aplicable a cualquier material anisótropo. Si tiene isotropía en las propiedades elásticas las ecuaciones se simplifican, los módulos elásticos son iguales, \(E_\theta = E_r \) y \(a = 1 \) según la ecuación 2.13, y el módulo de Poisson es constante en todas las direcciones, \(\nu_{\theta r} = \nu_{r\theta} = \nu \). Luego, las ecuaciones de las tensiones quedan

\[
\begin{align*}
\sigma_\theta(r) &= c_r \left[(1 - \nu) \frac{1}{r^2} A + (1 + \nu) \frac{1 + 3\nu}{8} b \frac{1}{r^2} \right] \\
\sigma_r(r) &= c_r \left[(\nu - 1) \frac{1}{r^2} A + (\nu + 1) \frac{3 + \nu}{8} b \frac{1}{r^2} \right]
\end{align*}
\]

(2.36)

Estas ecuaciones también coinciden con la bibliografía clásica, por ejemplo Timoshenko y Goodier (1970) [49].

Las constantes \(A \) y \(B \) son propias de cada aplicación. En un rotor simple, con un solo material y libre en los radios interior \(r_i \) y exterior \(r_e \), estas constantes se pueden hallar analíticamente igualando a cero las tensiones radiales en estos dos puntos

\[\sigma_r(r_i) = 0 ; \quad \sigma_r(r_e) = 0 \]

Sus valores son

\[
\begin{align*}
A &= \frac{(3 + \nu_{r\theta}) b}{(a - \nu_{r\theta}) (9 - a^2)} \frac{r_i^{a+3} r_e^{2a} - r_e^{a+3} r_i^{2a}}{r_e^{2a} - r_i^{2a}} \\
B &= \frac{(3 + \nu_{r\theta}) b}{(a + \nu_{r\theta}) (9 - a^2)} \frac{r_i^{a+3} - r_e^{a+3}}{r_e^{2a} - r_i^{2a}}
\end{align*}
\]

(2.37)

Este resultado también equivale a las fórmulas presentadas en la bibliografía clásica, Timoshenko y Goodier (1970) [49].
2.2.6. Punto singular de la solución en tensión plana

La solución anterior, deducida a partir de leyes generales, no es válida para todos los valores del parámetro \(a \). En las ecuaciones aparece un denominador con el factor \((9 - a^2) \) y, por lo tanto, cuando \(a = 3 \) el resultado es infinito. Este valor constituye un punto singular de las ecuaciones que necesita una atención especial.

Esta discontinuidad aparece en la solución matemática pero no se intuye que tenga un significado físico. El parámetro \(a \) es función del material, según la ecuación 2.13, y si el valor \(a = 3 \) correspondiera a un material hipotético no utilizado en rotores, el problema se quedaría en un simple concepto matemático, pero este valor está dentro la gama de materiales utilizados y, en consecuencia, es necesario rehacer el proceso de cálculo para hallar otra solución.

El valor mínimo dentro de la gama de materiales es \(a = 1 \) y corresponde a los materiales isotropos. Los materiales compuestos, utilizados en la fabricación de rotores, tienen valores de \(a \) superiores a la unidad; la fibra de vidrio con resina epoxi tiene un valor cercano a 2 y la fibra de carbono con epoxi, mucho más rígida, alcanza un valor de 4. El resto de fibras suelen tener valores intermedios, por lo tanto, en alguna de ellas el valor puede ser 3.

Analizando el proceso anterior se observa que la solución de la integral \(I_c \) de la ecuación 2.23 no es válida para un valor de \(a = 3 \). El factor \(r^{2-a} \) adopta el valor \(r^{-1} \) y la solución no es una función polinómica sino logarítmica. La solución correcta, denominada \(I_{c3} \), es

\[
\int f(r) e^{\int g(r) \, dr} \, dr = b \left(r^{-1} + r^5 \right) dr = b \left(\ln r + \frac{r^6}{6} \right) \quad (2.38)
\]

El desarrollo posterior sigue los mismos pasos pero con las modificaciones que genera este cambio. En todas las ecuaciones aparece la nueva función logarítmica. La ecuación 2.24 se convierte en

\[
x = A' \frac{r^5}{(1 + r^6)^2} + b \frac{r^5}{(1 + r^6)^2} \left(\ln r + \frac{r^6}{6} \right) \quad (2.39)
\]

La integral \(I_2 \) también es particular, se denomina \(I_{23} \)

\[
I_{23} = \int \frac{r^5}{(1 + r^6)^2} \left(\ln r + \frac{r^6}{6} \right) dr = \frac{r^6 \ln r - 1}{36 \left(1 + r^6 \right)} \quad (2.40)
\]

En la ecuación \(y \) se modifica el segundo sumando

\[
y = A' \frac{-1}{6(1 + r^6)} + b \frac{r^6(6\ln r - 1)}{36(1 + r^6)} + B' \quad (2.41)
\]
2.2. FUERZA CENTRÍFUGA

y en la ecuación del desplazamiento el tercer sumando de la ecuación 2.29 se desdobla y aparece un término en función de \(r^3 \ln r \)

\[
u(r) = A \frac{1}{r^3} + B r^3 - \frac{b}{36} r^3 + \frac{b}{6} r^3 \ln r \quad (2.42)
\]

Las expresiones de las tensiones deducidas a partir de \(u \) y \(u_r \) contienen también un nuevo término en \(r^2 \ln r \)

\[
u_r = -A \frac{3}{r^4} + B 3r^2 + \frac{b}{9} r^2 + \frac{b}{2} r^2 \ln r
\]

\[
\left\{
\begin{array}{l}
\sigma_{\theta}(r) = 9 c_r \left[(1 - 3 \nu_{r \theta}) \frac{1}{r^4} A + (1 + 3 \nu_{r \theta}) r^2 B + \frac{-1 + 3 \nu_{r \theta}}{36} b r^2 + \frac{1 + 3 \nu_{r \theta}}{6} b r^2 \ln r \right] \\
\sigma_{r}(r) = c_r \left[(\nu_{r \theta} - 3) \frac{1}{r^4} A + (\nu_{r \theta} + 3) r^2 B + \frac{-\nu_{r \theta} + 3}{36} b r^2 + \frac{\nu_{r \theta} + 3}{6} b r^2 \ln r \right]
\end{array}
\right.
\quad (2.43)
\]

Esta solución es válida para el punto \(a = 3 \), pero cabe preguntarse qué sucede en los valores próximos a 3. Se ha comprobado, con algunos ejemplos, que dentro de un intervalo de \(\pm 0.01 \) el resultado de las ecuaciones generales 2.31 y 2.32 no sufre discontinuidad. El tamaño del incremento es suficiente porque es inferior a la precisión habitual del parámetro \(a \), determinado a partir de los valores de las propiedades elásticas. Luego, las ecuaciones generales son aplicables siempre, a excepción del propio punto \(a = 3 \).

También se ha comprobado que las ecuaciones siguen siendo continuas para un intervalo de \(\pm 10^{-6} \), en cambio, para un intervalo de \(\pm 10^{-7} \) se generan resultados irregulares en los puntos próximos a \(a = 3 \). Esto se atribuyen a la herramienta computacional de cálculo, no a la función matemática.

De todo ello se deduce que la existencia del punto singular no depende de un fenómeno físico sino simplemente matemático. La integral de \(r^{-i} \) en la ecuación 2.23 tiene una formulación muy distinta en los valores de \(a \) próximos a 3 que en el propio valor 3. En los valores próximos la solución es una potencia, \((-i)^{r^{1-i}} \), mientras que en 3 es una función logarítmica, \(lni \); a pesar de ello, la función matemática es totalmente continua.

2.2.7. Ejemplo calculado en tensión plana

Las fórmulas deducidas para las condiciones de tensión plana se aplican a continuación a un ejemplo simple. Se pretende observar algunas características del comportamiento del rotor y deducir algunos principios para el diseño. También se compara con los resultados obtenidos mediante el método de los elementos finitos (MEF).

Se aplica a un rotor de un solo material, fibra de vidrio, y de pared gruesa, con radio
interior \(r_i = 0.3 \text{ m} \) y exterior \(r_e = 0.5 \text{ m} \). Se somete a una velocidad de 10000 rpm.

Los resultados se exponen en la figura 2.6 en función del radio, expresado en valor unitario, \(r/r_e \), para que sea más universal. En el gráfico de la izquierda se representa el desplazamiento calculado mediante las ecuaciones 2.30 y 2.37. A la derecha se representan las tensiones, tangencial y radial, de la ecuación 2.32.

Figura 2.6: Desplazamiento radial \((u)\) y tensiones, tangencial \((\sigma_\theta)\) y radial \((\sigma_r)\) de un rotor en condiciones de tensión plana.

En el gráfico de desplazamiento radial \(u \) se observa que el valor varía muy poco con el radio, en la tensión tangencial el valor máximo se halla en el radio interior y la tensión radial, con el factor de escala de 10, el máximo está en el centro.

Figura 2.7: Generación de tensiones en un rotor a partir de las deformaciones en distintas zonas.

\(^1\)El material y los radios se han elegido de manera conveniente para aplicarlo al diseño, como se verá en el apartado 9.1.3, y se mantienen en todos los ejemplos posteriores.
El comportamiento del rotor no es evidente, la fuerza centrífuga aumenta con el radio, pero ni el desplazamiento ni la tensión tangencial son mayores en el radio exterior que en el resto. Su valor no depende sólo de la fuerza local, sino que el rotor se comporta como una estructura cerrada, con sus parámetros relacionados entre sí. La deformación tangencial ε_{θ}, y en consecuencia la tensión tangencial, están en función del desplazamiento radial u como se comprueba en la ecuación 2.5.

En la figura 2.7 se muestra esquemáticamente la relación entre desplazamiento y tensiones, y explica la generación de estos gráficos. El rotor se divide en tres aros simples (a) y se somete a un velocidad ω. En un primer paso se considera que los tres aros son independientes entre sí y se crean tensiones tangenciales y desplazamientos individuales, como muestra el dibujo (b). En cada uno la tensión tangencial media σ'_{θ} es función de r^2 y la dilatación u' de r^3, de ahí que los aros tiendan a separarse entre sí, $u'_{1} < u'_{2} < u'_{3}$.

En un segundo paso (c) se obliga a los aros a unirse de nuevo para formar un cilindro único, o sea, el interior se dilata y el exterior se contrae. El desplazamiento radial del aro 1 sigue aumentando, $u_{1} = u'_{1} + \Delta u$, y el de 3 disminuye, $u_{3} = u'_{3} - \Delta u$, de manera que los desplazamientos finales de los tres aros son prácticamente iguales, como se observa en la figura 2.6. Para ello es necesaria una tensión radial σ_{r} de tracción en las fronteras entre aros, que a su vez, aumenta la tensión tangencial del aro 1 y disminuye la del 3. La tensión tangencial final es superior en el interior que en el exterior porque la tensión inicial es función de r^2 y la diferencia de desplazamiento es función de r^3. Ambas tensiones se corresponden con la figura 2.6.

![Figura 2.8: Tensión tangencial en condiciones de tensión plana.](image)

![Figura 2.9: Tensión radial en condiciones de tensión plana.](image)

En la figura 2.6 se demuestra que la tensión tangencial no es uniforme, lo que supone...
una menor resistencia en el radio interior. En los resultados del ejemplo, figura 2.6, la diferencia respecto del valor medio es del 25%.

La tensión radial, aún siendo muy inferior a la tangencial, es más perjudicial para los materiales compuestos porque las fibras están orientadas en dirección tangencial. En el ejemplo su valor es 15 veces inferior a la tangencial pero la resistencia transversal a la fibra es 30 veces menor que la longitudinal, como se verá en el apartado 6.3.2, y el rotor fallaría por tensión radial.

Para verificar las fórmulas, el resultado de este ejemplo se compara con el obtenido en un modelo calculado mediante el MEF. Los datos del modelo son los mismos que en el ejemplo anterior, solamente se añade una longitud axial. Se elige un valor pequeño, \(l = 80 \) mm, para que sea inferior al espesor de la pared del cilindro y simule la condición de tensión plana.

Se utilizan elementos axisimétricos respecto del eje de rotación \(z \) y los resultados se representan sobre una superficie en el plano \(rz \). El origen del eje \(z \) está situado en el extremo del rotor, como se ha definido en la figura 2.1. El modelo tiene un eje de simetría en el radio situado en \(z = l/2 \), con elementos de borde que sólo permiten el desplazamiento en \(r \), tal como se representa en las figuras de resultados 2.8 y 2.9.

Las tensiones en las figuras 2.8 y 2.9 varían muy poco con la posición axial, solamente la tensión radial tiene un ligero descenso al aproximarse al extremo lateral del rotor, \(z = 0 \).

En la figura 2.10 se comparan los resultados de las ecuaciones, de la figura 2.6, representados con línea continua y los obtenidos en MEF, con puntos discontinuos. Estos últimos corresponden a un radio situado en la posición axial \(z = l/2 \) y en las tensiones radiales se incluye, además, el resultado de un radio situado en \(z = 0 \).

Figura 2.10: Comparación de las tensiones, tangenciales y radiales, con las obtenidas mediante el MEF.

En los gráficos de comparación de tensiones de la figura 2.10 se observa que la diferencia
2.2. FUERZA CENTRÍFUGA

en las tensiones tangenciales es inapreciable. En las tensiones radiales existe una pequeña diferencia en la zona central, originada por la posición axial elegida, el resultado para \(z = l/2 \) es algo superior, mientras que para \(z = 0 \) es inferior. Se observa, además, que el primer valor y el último se apartan de cero, pero es debido a un defecto de lectura de resultados del modelo que se podría corregir fácilmente con una extrapolación.

Con este ejemplo se puede concluir que las ecuaciones deducidas son válidas para el cálculo de deformaciones y tensiones. En los capítulos siguientes se estudia más a fondo la posición axial y se da una explicación a la pequeña discrepancia en las tensiones radiales.

2.2.8. Cálculo en condiciones de deformación plana

Si la longitud axial del volante es grande el cálculo de tensiones realizado en condiciones de tensión plana tiene ciertas limitaciones. Es habitual calcular los elementos de gran longitud mediante las condiciones de deformación plana, pero en el caso de los rotores este sistema presenta también algunas limitaciones. A pesar de ello, aquí se aplica al cálculo del rotor y más adelante, en el capítulo 4, se añadirán algunas condiciones específicas.

Este sistema parte de las mismas ecuaciones iniciales de los apartados 2.2.1 y 2.2.2, pero en la ecuación constitutiva del material 2.6 no son válidas las simplificaciones del apartado 2.2.3. En ellas mantiene la tensión \(\sigma_z \) y la deformación \(\varepsilon_z \), a pesar ser nula por la propia condición de deformación plana. La expresión de \(\varepsilon_z \), deducida de la ecuación 2.6, es ahora

\[
\varepsilon_z = -\frac{\nu_{zz}}{E_z} \sigma_{zz} - \frac{\nu_{zz}}{E_r} \sigma_{r} + \frac{1}{E_z} \sigma_z = 0
\]

(2.44)

de donde la tensión axial es

\[
\sigma_z = E_z \left(\frac{\nu_{zz}}{E_\theta} \sigma_{zz} + \frac{\nu_{zz}}{E_r} \sigma_{r} \right)
\]

(2.45)

Las expresiones de \(\varepsilon_\theta \) y \(\varepsilon_r \) en función de \(\sigma_r \) y \(\sigma_\theta \) se obtienen ahora del propio sistema 2.6 y de la ecuación de \(\sigma_z \) anterior

\[
\begin{align*}
\varepsilon_\theta &= \frac{1 - \nu_{zz} \nu_{zz}}{E_\theta} \sigma_\theta - \left(\frac{\nu_{zz}}{E_r} + \frac{\nu_{zz}}{E_r} \right) \sigma_r \\
\varepsilon_r &= -\left(\frac{\nu_{zz} \nu_{zz}}{E_\theta} \sigma_\theta + \frac{1 - \nu_{zz} \nu_{zz}}{E_r} \right) \sigma_r
\end{align*}
\]

(2.46)

En ellas, por la simetría expresada en las ecuaciones 2.7, se verifica la igualdad

\[
\frac{\nu_{zz} \nu_{zz}}{E_r} + \frac{\nu_{zz} \nu_{zz}}{E_r} = \frac{1 - \nu_{zz} \nu_{zz}}{E_\theta} + \frac{\nu_{zz} \nu_{zz}}{E_r}
\]

(2.47)
y los factores que multiplican a las tensiones, que dependen sólo de las propiedades del material, se resumen en los tres parámetros \(p, q \) y \(s \) siguientes:

\[
p = \frac{1 - \nu_{rr} \nu_{rz}}{E_r}; \quad q = \frac{\nu_{r \theta}}{E_\theta} + \frac{\nu_{rz} \nu_{z\theta}}{E_\theta}; \quad s = \frac{1 - \nu_{\theta z} \nu_{z \theta}}{E_\theta}
\]

(2.48)

Estas definiciones se pueden simplificar si el material tiene todas las fibras orientadas tangencialmente, o sea a \(0^\circ \), y las propiedades en las direcciones transversales son iguales, ecuación 2.8,

\[
p = \frac{1 - \nu^2_{zz}}{E_r}; \quad q = \nu_{r \theta} \left(1 + \nu_{rz}\right)/E_\theta; \quad s = \frac{1 - \nu_{\theta z} \nu_{z \theta}}{E_\theta}
\]

(2.49)

Reescribiendo en forma matricial las ecuaciones 2.46, igual que en la ecuación 2.9 del cálculo en condiciones de tensión plana, queda

\[
\begin{align*}
\{ \varepsilon_\theta \} &= \begin{bmatrix} s & -q \\ -q & p \end{bmatrix} \{ \sigma_\theta \} \\
\{ \varepsilon_r \} &= \begin{bmatrix} s & -q \\ -q & p \end{bmatrix} \{ \sigma_r \}
\end{align*}
\]

(2.50)

en donde las tensiones, siguiendo el mismo razonamiento que en la ecuación 2.11, son

\[
\begin{align*}
\sigma_\theta &= \frac{p}{ps - q^2} \left(\frac{u}{r} + \frac{q}{p} u_r \right) \\
\sigma_r &= \frac{s}{ps - q^2} \left(\frac{q}{s} u_r + u_r \right)
\end{align*}
\]

(2.51)

A su vez, sustituyendo estas tensiones en la ecuación de equilibrio de fuerzas 2.4, se deduce la misma ecuación de desplazamiento 2.12 de tensión plana

\[
u_{rr} + \frac{1}{r} u_r - \frac{a^2}{r^2} u = b r
\]

(2.52)

pero con coeficientes \(a \) y \(b \) distintos

\[
a = \sqrt{\frac{p}{s}}; \quad b = -\frac{ps - q^2}{s} \rho \omega^2
\]

(2.53)

y su solución es la misma que en tensión plana, ecuación 2.29,

\[
u(r) = \frac{1}{r^a} A + r^a B + \frac{b}{9 - a^2} r^3
\]

(2.54)

Finalmente, sustituyendo este desplazamiento y su derivada en las ecuaciones 2.51 se obtienen las tensiones
2.2. FUERZA CENTRÍFUGA

\[
\begin{align*}
\sigma_\theta(r) &= a^2 c_r \left[\left(1 - a \frac{q}{p}\right) \frac{1}{r^{a+1}} + \left(1 + a \frac{q}{p}\right) r^{a-1}B + \frac{1 + 3\frac{q}{p}}{9 - a^2} b r^2 \right] \\
\sigma_r(r) &= c_r \left[\left(\frac{q}{s} - a\right) \frac{1}{r^{a+1}} + \left(\frac{q}{s} + a\right) r^{a-1}B + \frac{s + 3}{9 - a^2} b r^2 \right]
\end{align*}
\]
(2.55)

en donde los parámetros \(c_r \) y \(b \), que dependen de las propiedades del material, se definen a través de los parámetros intermedios \(p, q \) y \(s \)

\[
c_r = \frac{s}{ps - q^2} ; \quad b = -\frac{p \omega^2}{c_r}
\]
(2.56)

Si las fibras están orientadas a 0\(^\circ\) los parámetros de la ecuación 2.55 se pueden relacionar directamente con las propiedades del material

\[
a = \sqrt{\frac{E_\theta}{E_r} \frac{1 - \nu_{\theta r}^2}{1 - \nu_{r \theta} \nu_{r \theta}}} ; \quad c_r = \frac{(1 - \nu_{\theta r} \nu_{r \theta})}{(1 + \nu_{rz}) (1 - \nu_{r \theta} \nu_{r \theta} - \nu_{rz})}
\]
(2.57)

Además de las tensiones \(\sigma_\theta \) y \(\sigma_r \), en deformación plana, existe la tensión \(\sigma_z \) de la ecuación 2.45. Simplificando las propiedades según la igualdad de la ecuación 2.7(1) se reduce a

\[
\sigma_z(r) = \nu_{\theta z} \sigma_\theta + \nu_{rz} \sigma_r
\]
(2.58)

En un rotor simple de un solo material y libre en el radio interior \(r_i \) y exterior \(r_e \) las constantes de contorno \(A \) y \(B \) valen

\[
\begin{align*}
A &= \frac{(3 + \nu_{r \theta}) b}{\nu_{r \theta} (1 + \nu_{rz})} \left(\frac{r_i^{a+3} r_e^{2a} - r_e^{a+3} r_i^{2a}}{1 - \nu_{r \theta} \nu_{r \theta} - a} \right) \frac{r_e^{2a} - r_i^{2a}}{(9 - a^2)} \\
B &= \frac{(3 + \nu_{r \theta}) b}{\nu_{r \theta} (1 + \nu_{rz})} \left(\frac{r_i^{a+3} - r_e^{a+3}}{1 - \nu_{r \theta} \nu_{r \theta} + a} \right) \frac{r_e^{2a} - r_i^{2a}}{(9 - a^2)}
\end{align*}
\]
(2.59)

Como se observa en las ecuaciones 2.54 y 2.55 esta solución presenta un punto singular para \(a = 3 \), igual que en tensión plana. El origen es el mismo y se resuelve rehaciendo las ecuaciones con la solución logarítmica de la ecuación 2.38. La expresión del desplazamiento coincide con la ecuación 2.42 de tensión plana y las tensiones son ligeramente distintas.
CAPÍTULO 2. TENSIONES MECÁNICAS

$$u(r) = A\frac{1}{r^3} + Br^3 - \frac{b}{36} r^3 + \frac{b}{6} r^3 \ln r$$

$$\sigma_{\theta}(r) = 9c_r \left[\left(1 - 3 \frac{\nu_{\theta r}}{1 - \nu_{\theta z}} \right) \frac{1}{r^4} A + \left(1 + 3 \frac{\nu_{\theta r}}{1 - \nu_{\theta z}} \right) r^2 B \right]$$

$$+ \left(-1 + 3 \frac{\nu_{\theta r}}{1 - \nu_{\theta z}} \right) \frac{b}{36} r^2 + \left(1 + 3 \frac{\nu_{\theta r}}{1 - \nu_{\theta z}} \right) \frac{b}{6} r^2 \ln r \right] \quad (2.60)$$

$$\sigma_r(r) = c_r \left[\left(\nu_{r\theta}(1 + \nu_{rz}) - 3 \right) \frac{1}{r^4} A + \left(\nu_{r\theta}(1 + \nu_{rz}) + 3 \right) r^2 B \right]$$

$$+ \left(- \nu_{r\theta}(1 + \nu_{rz}) + 3 \right) \frac{b}{36} r^2 + \left(\nu_{r\theta}(1 + \nu_{rz}) + 3 \right) \frac{b}{6} r^2 \ln r \right]$$

2.2.9. Ejemplo calculado en deformación plana

Igual que en tensión plana se presenta a continuación un ejemplo aplicando las fórmulas deducidas en condiciones de deformación plana. Se utilizan los mismos datos del rotor que en la sección 2.2.7 para comparar los resultados de ambos sistemas.

Figura 2.11: Desplazamiento radial y tensiones en condiciones de deformación plana.

Los resultados se presentan en la figura 2.11 con el mismo formato que en tensión plana: a la izquierda los desplazamientos según la ecuación 2.54 y a la derecha las tensiones, tangencial y radial, ecuación 2.55, y axial, ecuación 2.58.
Los valores son parecidos a los obtenidos en tensión plana, las diferencias son pequeñas. El desplazamiento, igual que en tensión plana, es casi constante, incluso el valor en el radio interior es ligeramente mayor que en el exterior. Los gráficos de las tensiones tienen la misma forma que en tensión plana, pero la tangencial tiene más pendiente y la radial es más alta debido a la variación radial del desplazamiento.

También se presenta la tensión axial, sus valores son pequeños aunque no despreciables, es máximo en la zona central y el mínimo en el radio exterior. Estos valores son poco fiables, de manera que son analizados y recalcados en el capítulo 4.

Estos resultados, igual que los de tensión plana, se comparan con los obtenidos mediante el cálculo en elementos finitos. Para ello, se utiliza también un modelo axisimétrico como el de las figuras 2.8 y 2.9, pero con doble restricción axial para simular las condiciones de deformación plana.

Los resultados se presentan en las figuras 2.12 y 2.13 y se observa que las tensiones son constantes en la dirección axial, como es propio de la deformación plana.

![Figura 2.12: Tensiones tangenciales en deformación plana.](image1)

![Figura 2.13: Tensiones radiales en deformación plana.](image2)

Estos valores se comparan con los resultados de las ecuaciones en la figura 2.14. Para ello, se capturan los valores de las tensiones sobre el radio $z = l/2$ y se representan en puntos discontinuos, mientras que los resultados de las ecuaciones se muestran en línea continua. Se observa que los resultados son totalmente idénticos, excepto en los extremos por no haber extrapolado los valores de MEF, y su coincidencia es superior a la de tensión plana en la figura 2.10.
2.2.10. Consideraciones para fibras axiales

Antes de afrontar el estudio de un rotor con fibras orientadas a 90° hay que recordar que sólo se aplican en rotores multicapa, como se ha expuesto en el apartado 1.3.3. A pesar de ello en estos primeros capítulos se considera un rotor hipotético formado solamente por fibras a 90° con el fin de estudiar su comportamiento analítico.

Si la fibras están orientadas a 90°, como se indica en la figura 2.15, la dirección longitudinal del material L coincide con la dirección axial y las transversales T con la radial y la tangencial. En el cálculo son aplicables la ecuación 2.6 y a las igualdades 2.7, pero las correspondencias entre propiedades de la ecuación 2.8 se sustituyen por

\[E_r = E_{\theta} ; \quad \nu_{r\theta} = \nu_{\theta r} ; \quad \nu_{\theta z} = \nu_{rz} ; \quad \nu_{z\theta} = \nu_{zr} \quad (2.61) \]

Estas relaciones se comprueban con los coeficientes de Poisson de la figura 2.16

![Figura 2.16: Coeficientes de Poisson en la fibra a 90°](image)

El cálculo del rotor en condiciones de tensión plana es el mismo que para fibras a 0°, tanto el proceso deductivo como las ecuaciones finales, pero ahora se simplifica mucho. En el plano de estudio, \(\theta r \), el material tiene propiedades isótropas y el parámetro \(a \) se reduce a la unidad. Con ello las ecuaciones se simplifican: los parámetros de cálculo definidos en las ecuaciones 2.13 y 2.34 quedan

\[a = 1 \quad ; \quad b = -\frac{\rho \omega^2}{c_r} \quad (2.62) \]

y el parámetro \(c_r \), definido en 2.33, ahora es

\[c_r = \frac{E_r}{1 - \nu_{\theta r}^2} \quad (2.63) \]

Las deformaciones y tensiones se calculan directamente con la fórmulas del estado de tensión plana para un material isótropo, ecuaciones 2.30 y 2.36, aunque con propiedades elásticas y parámetros propios para las fibras a 90°. El módulo \(\nu \) isótropo de estas ecuaciones se puede sustituir directamente por \(\nu_{\theta r} \).

El cálculo en condiciones de deformación plana no se reduce al del material isótropo como en la tensión plana anterior, porque interviene la tensión axial. El proceso y las fórmulas finales son las mismas que para fibras a 0°, pero con algunas simplificaciones.

Los parámetros \(p \), \(s \) y \(q \), de las ecuaciones 2.48, apenas se simplifican al aplicar las nuevas propiedades de las ecuaciones 2.61 y quedan de la siguiente forma

\[p = s = \frac{1 - (1 - \nu_{rz})\nu_{z\theta}}{E_r} = \frac{1 - (1 - \nu_{\theta z})\nu_{z\theta}}{E_{\theta}} \quad ; \quad q = \frac{\nu_{r\theta}}{E_{\theta}} + \frac{\nu_{rz}\nu_{z\theta}}{E_{\theta}} \quad (2.64) \]

El valor de \(a \) sigue siendo la unidad, según la ecuación 2.53, y las ecuaciones del desplazamiento 2.54 y las tensiones 2.55 se simplifican a
CAPÍTULO 2. TENSIONES MECÁNICAS

\[u(r) = \frac{1}{r} A + r B + \frac{b}{8} r^3 \]

\[\sigma_\theta(r) = c_r \left[\left(1 - \frac{q}{p} \right) \frac{1}{r^2} A + \left(1 + \frac{q}{p} \right) B + \frac{1 + 3 \left(1 - \frac{q}{p} \right)}{8} b r^2 \right] \] \hspace{1cm} (2.65)

\[\sigma_r(r) = c_r \left[\left(\frac{q}{s} - 1 \right) \frac{1}{r^2} A + \left(\frac{q}{s} + 1 \right) B + \frac{3 + \left(1 - \frac{q}{s} \right)}{8} b r^2 \right] \]

en donde \(c_r \) y las relaciones de parámetros son ahora

\[c_r = \frac{(1 - \nu_{\theta z} \nu_{z\theta}) E_\theta}{1 - \nu_{\theta z}^2 - 2 \nu_{\theta z} \nu_{z\theta} (1 + \nu_{r\theta})} \] \hspace{1cm} (2.66)

\[\frac{q}{p} = \frac{\nu_{r\theta} + \nu_{\theta z} \nu_{z\theta}}{1 - \nu_{\theta z}^2} ; \quad \frac{q}{s} = \frac{\nu_{r\theta} + \nu_{\theta z} \nu_{z\theta}}{1 - \nu_{\theta z}^2} \]

La tensión axial se determina con la ecuación 2.48, simplificada por la ecuación 2.61

\[\sigma_z(r) = \nu_{\theta z} (\sigma_\theta + \sigma_r) \] \hspace{1cm} (2.67)

Figura 2.17: Desplazamiento y tensiones en un rotor con fibras axiales, a 90°, calculado en tensión plana.
2.2.11. Ejemplo de fibra axial

En el ejemplo de un rotor con fibras axiales se toman las mismas dimensiones que los ejemplos anteriores pero se disminuye la velocidad de giro a 2500 rpm, para que las tensiones estén dentro de los límites de la resistencia.

Los resultados para tensión plana se presentan en la figura 2.17. En ellos se observa que la pendiente negativa del desplazamiento es superior a la del rotor con fibra a 0°, y por tanto, la tensión tangencial varía mucho con el radio, de forma que su valor en el radio interior es doble que en el exterior. También se genera una tensión radial proporcionalmente mayor, si se compara con los ejemplos anteriores.

Los resultados para deformación plana se presentan en la figura 2.18, se incluye la tensión axial. Los valores coinciden prácticamente con los valores obtenidos en tensión plana, su diferencia es inapreciable. La tensión axial es prácticamente lineal, sin un valor máximo en la zona central como el rotor con fibra 0° en la figura 2.11.

Figura 2.18: Desplazamiento y tensiones en rotor con fibras a 90° calculado en deformación plana.

Con este ejemplo se concluye que los resultados obtenidos con las fórmulas para fibras a 0° son totalmente coherentes.

2.3. Aceleración angular

2.3.1. La aceleración angular en el rotor

Un volante de acumulador cinético, además de la fuerza centrífuga generada por la velocidad de giro, está sometido a fuerzas de aceleraciones y desaceleraciones causadas por
los intercambios de energía con el exterior.

En las aplicaciones comunes las tensiones generadas por la aceleración son muy pequeñas en comparación con las originadas por la fuerza centrífuga y carecen de importancia. Sin embargo pueden existir ciertas aplicaciones donde no sean despreciables, por ejemplo en volantes que deban liberar la energía en muy poco tiempo para producir un choque mecánico, o absorberla para evitar impacto.

Para la resistencia del rotor las tensiones de aceleración son más perjudiciales en los volantes fabricados con material compuesto que en los de metal. Las fibras orientadas en dirección circunferencial presentan una gran resistencia a las tensiones tangenciales pero muy baja a las tensiones cortantes de la aceleración angular. Así, las aceleraciones grandes que en volantes de materiales homogéneos no tienen importancia, en volantes de materiales compuestos pueden producir la rotura.

A pesar de tener unas aplicaciones muy limitadas se ha considerado oportuno considerar las fuerzas de aceleración en el cálculo, de forma que el diseño del volante se realiza con las tensiones completas.

2.3.2. Tensiones de la aceleración angular

Se considera que el par de aceleración se aplica a través de la superficie interior del rotor, desde un eje central o generado por un motor eléctrico situado en el interior del rotor.

Figura 2.19: Tensiones creadas por una aceleración (α) aplicada desde el radio interior.

En la figura 2.19 se representan las tensiones en un elemento diferencial del rotor creadas por la aceleración, iguales a las tensiones del elemento diferencial inicial en la figura 2.2. La aceleración angular α del rotor se consigue aplicando una tensión de cortante τ_i en la superficie interior en r_i. Se considera que esta superficie es rígida, tanto en la dirección circunferencial como en la axial y, en consecuencia, la tensión es uniforme en ambas direcciones.
2.3. ACCELERACIÓN ANGULAR

Los incrementos diferenciales de cada una de las tensiones, en la figura 2.19, no se asignan al azar sino según un criterio que facilita la resolución. Aunque el par de aceleración esté aplicado en el radio interior y las tensiones disminuyan al aumentar el radio, desde \(\tau_i \) en \(r_i \) hasta 0 en \(r_e \), el incremento de la tensión, \(d\tau_{r\theta} \) se asigna a la cara exterior del elemento diferencial, como se indica en la figura 2.19, donde la tensión es menor. Si dicho incremento se situase en el radio interior del elemento diferencial, el sistema planteado sería incompleto y su resultado erróneo; en este caso se debería añadir una ecuación sobre las condiciones de contorno del desplazamiento y la resolución sería más larga.

En dicho elemento es aplicable el equilibrio de fuerzas de la ecuación 2.1(2) que relaciona la tensión cortante \(\tau_{r\theta} \) con la fuerza de aceleración unitaria \(f_\theta \) definida en la ecuación 2.2.

Si, además de la uniformidad en la carga, el rotor tiene simetría circular, se eliminan los términos en \(\partial_\theta \) de las ecuaciones 2.1 y las dos funciones quedan independientes. En este caso, la tensión cortante \(\tau_{r\theta} \) es función sólo de la fuerza de aceleración \(f_\theta \) y la ecuación 2.1(2) se reduce a

\[
\frac{\partial \tau_{r\theta}}{\partial r} + \frac{2}{r} \tau_{r\theta} = -f_\theta
\]

(2.68)

La tensión cortante \(\tau_{r\theta} \) induce una deformación angular \(\gamma_{r\theta} \) y una deformación tangencial \(\nu \). Ambas están relacionadas por la ecuación 2.3(3), en la cual se elimina por simetría circular el término en \(\partial_\theta \)

\[
\gamma_{r\theta} = \frac{\partial \nu}{\partial r} - \frac{\nu}{r}
\]

(2.69)

Para relacionar esta deformación angular \(\gamma_{r\theta} \) y la tensión cortante \(\tau_{r\theta} \) la ecuación del material 2.6 se debe completar

\[
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r \\
\varepsilon_z \\
\gamma_{r\theta}
\end{bmatrix} =
\begin{bmatrix}
1 & \frac{\nu_{r\theta}}{E_\theta} & \frac{\nu_{\theta z}}{E_z} & 0 \\
\frac{\nu_{r\theta}}{E_\theta} & \frac{1}{E_r} & \frac{\nu_{rz}}{E_z} & 0 \\
-\frac{\nu_{z\theta}}{E_\theta} & -\frac{\nu_{z\theta}}{E_r} & \frac{1}{E_z} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r \\
\sigma_z \\
\tau_{r\theta}
\end{bmatrix}
\]

(2.70)

Las otras dos tensiones cortantes siguen siendo nulas. Solamente se generará una tensión cortante en el plano \(\theta z \) si la tensión \(\tau_i \), aplicada a la superficie interna, fuese variable con \(z \), pero más arriba se ha supuesto que es constante y, por lo tanto, la tensión \(\tau_{\theta z} \) es nula.

En este cálculo no tiene sentido distinguir entre tensión plana y deformación plana porque, como se ha dicho, las tensiones y los desplazamientos radiales son independientes de la tensión \(\tau_{r\theta} \).

De la ecuación elástica completa 2.70 es suficiente para el cálculo considerar la relación
\[
\tau_{r\theta} = G_{r\theta} \gamma_{r\theta} \quad (2.71)
\]

Con estas dos ecuaciones, 2.69 y 2.71, se obtiene la relación entre la tensión cortante \(\tau_{r\theta} \) y el desplazamiento tangencial \(\nu \)

\[
\tau_{r\theta} = G_{r\theta} \left(\nu_r - \frac{\nu}{r} \right) \quad (2.72)
\]

Con esta tensión y su derivada respecto del radio

\[
\tau_{r\theta,r} = G_{r\theta} \left(\nu_{rr} - \frac{\nu_r}{r} + \frac{\nu}{r^2} \right)
\]

la ecuación de equilibrio 2.68 se puede reescribir en función del desplazamiento angular

\[
u_{rr} + \frac{1}{r} \nu_r - \frac{1}{r^2} \nu = h \ r \quad (2.73)
\]

en la cual, el parámetro de aceleración \(h \) incluye la aceleración angular \(\alpha \) y las propiedades del material. Tiene el mismo significado que el parámetro \(b \) en las ecuaciones de la fuerza centrífuga. Su valor es

\[
h = \frac{\rho \alpha}{G_{r\theta}} \quad (2.74)
\]

La ecuación 2.73 tiene la misma estructura que la ecuación 2.12 pero con un valor \(a = 1 \). La solución es la misma y se aplican unas constantes de integración \(C \) y \(D \)

\[
\nu = C \frac{1}{r} + D \ r + \frac{h}{8} r^3 \quad (2.75)
\]

Sustituyendo esta ecuación y su derivada en la ecuación 2.72 se obtiene la tensión cortante

\[
\tau_{r\theta} = G_{r\theta} \left[-\frac{2}{r^2} C + \frac{h}{4} r^2 \right] \quad (2.76)
\]

Es interesante notar que en esta ecuación se ha eliminado la constante \(D \) y la tensión es función de una sola constante de integración. Físicamente es lógico porque en la ecuación 2.75 la constante \(D \) multiplica a \(r \) y los desplazamientos proporcionales al radio no producen distorsión angular y, en consecuencia, tampoco tensión cortante.

A continuación se hallan las constantes \(C \) y \(D \) para un rotor simple de un solo material. Las condiciones de contorno son las representadas en la figura 2.19, sujeto al eje por el radio interior \(r_i \) y libre el radio exterior \(r_e \). Además, se elige el origen del desplazamiento tangencial \(\nu \) en el radio interior.
2.3. ACELERACIÓN ANGULAR

\[\begin{align*}
\upsilon(r_i) &= 0 \quad ; \quad \tau_{r\theta}(r_e) = 0
\end{align*} \]

Aplicando estas condiciones a las ecuaciones 2.75 y 2.76 se obtienen las constantes

\[
C = \frac{h}{8} r_e^4 \quad ; \quad D = -\frac{C}{r_i^2} - \frac{h}{8} r_i^2
\]

(2.77)

En este cálculo no se ha tenido en cuenta la orientación de las fibras y, por lo tanto, es válido para las dos direcciones, 0° y 90°. Solamente afecta al valor del módulo de rigidez \(G_{r\theta} \).

Para determinar la ecuación de la tensión 2.76 no es necesario plantear el sistema a partir del desplazamiento tangencial \(\upsilon \), basta con aplicar la simple ecuación de equilibrio de fuerzas y las condiciones de contorno. A pesar de ello, se ha resuelto de esta forma para seguir la misma metodología que en el resto de cargas, de manera que se dispone de un sistema general coherente que puede facilitar la resolución de problemas posteriores.

2.3.3. Ejemplo de tensiones de aceleración

Los resultados de las ecuaciones del desplazamiento tangencial y la tensión se muestran en un ejemplo, aplicado sobre el mismo rotor que los casos anteriores. Este se somete a un par en el eje interior, de valor suficiente para que el rotor acelere a 10000 rad/s². Con las ecuaciones 2.75 y 2.76 se determinan los resultados de la figura 2.20.

![Figura 2.20: Desplazamiento tangencial y tensión cortante de un rotor sometido a un par de aceleración.](image)

Estos resultados son totalmente coherentes, la tensión cortante es máxima en el interior y se hace nula en el exterior. El desplazamiento tangencial, tomando como referencia un
valor nulo en el radio interior, aumenta con el radio, aunque su pendiente es decreciente porque la tensión disminuye. El resto de tensiones, σ_θ, σ_r y σ_z, son nulas.

2.4. Condiciones de contorno interiores

2.4.1. Rigidez interior del rotor

En los apartados anteriores se ha estudiado el cilindro exterior del rotor, exento de la sujeción mecánica con el eje interior, y se ha sometido solamente a las fuerzas generadas por la velocidad de giro y por la aceleración angular. Pero la unión mecánica con el eje interior transmite a la superficie interior del cilindro otras fuerzas que modifican las tensiones del cilindro. En general se pueden resumir en una fuerza tangencial y otra radial. La tensión cortante τ_i creada por las fuerzas del par de aceleración de la sección anterior es un caso particular de la fuerza tangencial. Para que exista una fuerza radial no es necesario una acción exterior, se puede generar con el propio desplazamiento radial u de la fuerza centrífuga.

![Figura 2.21: Rigidez de la superficie interior al desplazamiento tangencial v y al radial u.](image)

Para estudiar los efectos de esta unión mecánica con el eje se considera que tiene una cierta rigidez y se opone a los desplazamientos del radio interior r_i del rotor. Esta rigidez se descompone en las dos direcciones, como se indica en la figura 2.21, una radial que relaciona la fuerza F_r con el desplazamiento u y otra tangencial que relaciona F_θ con el desplazamiento v.

Esta rigidez se define mediante dos constantes de proporción unitarias que relacionan las tensiones con los desplazamientos unitarios. Se define una constante tangencial, k_θ en la figura 2.21, que relaciona la tensión cortante $\tau_{r\theta}$ con el desplazamiento tangencial v dividido por r_i, y una radial k_r que relaciona la tensión normal σ_r con el desplazamiento radial u dividido por r_i.
2.4. CONDICIONES DE CONTORNO INTERIORES

\[k_\theta = \frac{\tau r_\theta}{u} ; \quad k_r = \frac{\sigma_r}{r_i} \]

(2.78)

2.4.2. Efecto de la rigidez radial sobre las tensiones

La rigidez tangencial no genera nuevas tensiones en el rotor, afecta simplemente al desplazamiento tangencial del rotor respecto al eje central. Al valor del desplazamiento tangencial \(\nu \) respecto de la superficie interior, calculado en la sección 2.3, hay que sumarle el desplazamiento generado por \(k_\theta \).

La rigidez radial es más importante, crea tensiones radiales y tangenciales en el rotor. Se calculan con las fórmulas anteriores, ecuaciones 2.32 y 2.55, pero modificando las condiciones de contorno. Ahora son

\[\sigma_r(r_i) = k_r \frac{u}{r_i} ; \quad \sigma_r(r_e) = 0 \]

Figura 2.22: Modificación del desplazamiento y de las tensiones al aumentar gradualmente la rigidez interna del rotor \((k_r)\).

Para observar sus consecuencias sobre las tensiones se usa el rotor del ejemplo de la sección 2.2.7 y se aplica una rigidez radial \(k_r \) de valores crecientes, desde 0 hasta \(2 \pi \cdot 8 \cdot 10^{10} \) Pa. En la figura 2.22 se representan las variaciones en los gráficos de desplazamiento radial y de tensiones.

Se observa que para \(k_r = 0 \) los gráficos coinciden con los resultados de la figura 2.6. El desplazamiento radial disminuye si la rigidez aumenta, sobre todo en el radio interior, \(r/r_e = 0.6 \), donde se aplica la fuerza \(F_r \). Las tensiones radiales aumentan en el radio interior a causa de la fuerza interior, en cambio, las tangenciales disminuyen ligeramente.
El efecto más perjudicial de esta unión es el aumento de la tensión radial. Si la rigidez es nula la rotura del rotor se produce en el valor máximo de la tensión radial, como se ha comentado en el apartado 2.2.7 y de determinará en el capítulo 6. Luego, para no aumentar la tensión \(\sigma_r \) es deseable que la unión con el eje sea lo más elástica posible y sea capaz de absorber el desplazamiento radial propio del rotor.
Capítulo 3

TENSIONES RESIDUALES DEL MATERIAL

3.1. Tensiones térmicas originadas en el curado

3.1.1. Generación de tensiones durante el curado

En los materiales compuestos se generan tensiones residuales durante el proceso de curado de la resina que permanecen durante toda la vida de la pieza. Estas se suman a las tensiones de la fuerza centrífugas y disminuyen la capacidad de almacenamiento de energía del rotor.

Aparecen durante el proceso de calentamiento del material compuesto que acelera la transformación química de la resina. Según Dominginghaus (1993) [11], las resinas epoxi experimentan durante este ciclo térmico tres fases de dilatación: se expanden en el calentamiento y se contraen en el proceso de curado y en el enfriamiento. En los dos primeros la resina se halla todavía en estado viscoso y no se crean tensiones estables, en cambio, durante el enfriamiento, con la matriz totalmente solidificada, las dilataciones generan tensiones permanentes. En el capítulo 8, dedicado a proceso especiales de curado, se estudian con más detalle estas dilataciones.

Las tensiones residuales están originadas por la diferencia entre el coeficiente de dilatación térmica en dirección de las fibras, o longitudinal α_L, y el coeficiente en dirección perpendicular, o transversal α_T, figura 3.1. Este último es mayor que el longitudinal porque la resina tiene un coeficiente más elevado que la fibra, y por la disposición unidireccional de las fibras. Así, en la dirección transversal se suman las dilataciones de las dos fases y predomina la matriz, mientras que en la longitudinal la fibra retiene la matriz y predomina la dilatación de la fibra.

La diferencia entre la dilatación transversal y la longitudinal no es suficiente para generar tensiones internas en una pieza de material compuesto, es necesario además que la configuración estructural no admita esta diferencia. Es el caso de las piezas planas formadas por apilado de capas con fibras en distintas orientaciones, estudiadas en Springer y Tsai.
CAPÍTULO 3. TENSIONES RESIDUALES DEL MATERIAL

Figura 3.1: Coeficientes de dilatación térmica según la orientación de las fibras.

[47] (1981), en las que sobre una misma dirección se superponen deformaciones distintas y se igualan mediante tensiones internas. También se generan en las piezas con fibras distribuidas en círculos cerrados.

El rotor de fibra bobinada es un ejemplo de anillos cerrados, en el cual las deformaciones tangenciales son distintas de las radiales porque unas dependen del coeficiente longitudinal y las otras del transversal. Para entender con más detalle la generación de tensiones térmicas en el rotor se expone un caso simple formado por distintos anillos concéntricos, ver Tzeng y Pipes (1992) [52].

La figura 3.2 representa un sector circular dividido en tres anillos uniformes con las deformaciones y tensiones más importantes generadas en el enfriamiento. En la dirección circunferencial la contracción térmica es prácticamente nula, en cambio en la radial es elevada porque coincide con la dirección transversal de las fibras. La contracción radial ε_r del anillo intermedio intenta acercar los anillos laterales pero su rigidez tangencial impide el desplazamiento y se crea una tensión radial de tracción σ_r entre ellos. La fuerza radial sobre el anillo interior se compensa con una tensión tangencial σ_θ a tracción y en el exterior con una tensión de compresión.

Este fenómeno es coherente con las relaciones cinéticas de un cilindro de la ecuación 2.3. El desplazamiento radial u creado por la deformación ε_r genera una deformación tangencial ε_θ que origina la tensión tangencial σ_θ de los anillos.

Estas tensiones son nulas si el cilindro es de pared delgada pero su valor aumenta con el espesor de pared. En el caso de los volantes de inercia, en donde el espesor es elevado para aumentar la masa, alcanzan el 10 o 20% del valor de las tensiones centrífugas y, por lo tanto, afectan a la resistencia del rotor.

Las tensiones térmicas generadas en el material sólido son permanentes pero con el tiempo experimentan una ligera disminución. Según Tzeng (2001) [51] la relajación de estas tensiones en rotores puede alcanzar del 10 al 20% de su valor inicial, lo cual influye muy poco en el cálculo final de la resistencia.
3.1. TENSIONES TÉRMICAS ORIGINADAS EN EL CURADO

La deformación radial térmica \(\varepsilon_r \) genera una tensión radial \(\sigma_r \) en el centro y dos tangenciales \(\sigma_\theta \), de tracción y compresión, en los extremos.

3.1.2. Deformaciones térmicas

Para determinar las tensiones residuales de origen térmico hay que introducir en el cálculo las deformaciones térmicas generadas en el enfriamiento. Están en función de los coeficientes de dilatación térmica, que de forma genérica se denominan según la dirección, \(\alpha_\theta \) tangencial, \(\alpha_r \) radial y \(\alpha_z \) axial. También del incremento de temperatura \(\Delta T \) del rotor, desde la temperatura de curado \(T_c \) a la temperatura ambiente \(T_f \), o sea \(\Delta T = T_f - T_c \). Este incremento es siempre negativo porque la temperatura de curado es superior a la ambiental.

A la ecuación elástica general 2.6 se añaden las deformaciones de origen térmico.

\[
\begin{align*}
\left\{ \varepsilon_\theta \right\} &= \left[\begin{array}{ccc}
\frac{1}{E_\theta} & -\frac{\nu_{\theta r}}{E_r} & -\frac{\nu_{\theta z}}{E_z} \\
-\frac{\nu_{r \theta}}{E_\theta} & \frac{1}{E_r} & -\frac{\nu_{r z}}{E_z} \\
-\frac{\nu_{z \theta}}{E_\theta} & -\frac{\nu_{z r}}{E_r} & \frac{1}{E_z}
\end{array} \right] \left\{ \sigma_\theta \right\} + \left\{ \alpha_\theta \right\} \Delta T \\
\left\{ \varepsilon_r \right\} &= \left[\begin{array}{c}
0 \\
0 \\
0
\end{array} \right] \\
\left\{ \varepsilon_z \right\} &= \left[\begin{array}{c}
0 \\
0 \\
0
\end{array} \right]
\end{align*}
\]

Los pasos seguidos para el cálculo del desplazamiento y las tensiones térmicas son los mismos que en el mecánico. De la ecuación constitutiva del material 3.1 y las ecuaciones cinéticas 2.3 se deducen las ecuaciones de tensiones en función del desplazamiento, se aplican a la ecuación de equilibrio 2.1 y se obtiene la ecuación de desplazamiento radial \(u \). En la ecuación de equilibrio se considera que las cargas unitarias de velocidad y aceleración son nulas, \(f_c = f_\theta = 0 \), pues se pretende calcular sólo las tensiones térmicas.

Igual que en el estudio mecánico, este cálculo es válido para fibras en cualquier dirección, aunque se aplica principalmente a las fibras orientadas tangencialmente (0°). Si las fibras se orientan axialmente (90°) se añaden algunas consideraciones al final de la sección.
3.1.3. Ecuaciones para condiciones de tensión plana

El cálculo en condiciones de tensión plana, igual que en el mecánico, es el más simple y se puede aplicar a rotores de poca longitud. En él se considera una tensión axial nula, \(\sigma_z = 0 \), y se elimina de la ecuación general. Tampoco interviene la deformación \(\varepsilon_z \) y la ecuación 3.1 queda

\[
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{E_\theta} - \nu_{r\theta} & \nu_{r\theta} \\
-\nu_{r\theta} & \frac{1}{E_r}
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix} +
\begin{bmatrix}
\alpha_\theta \\
\alpha_r
\end{bmatrix} \Delta T
\]

(3.2)

Las tensiones se pueden expresar en función de las deformaciones y de la temperatura

\[
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix} =
\begin{bmatrix}
\frac{E_\theta E_r}{1 - \nu_{r\theta} \nu_{r\theta}}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_\theta & - \alpha_\theta \Delta T \\
\varepsilon_r & - \alpha_r \Delta T
\end{bmatrix}
\]

(3.3)

Las deformaciones se sustituyen por los desplazamientos radial \(u \), según las ecuaciones cinéticas 2.5 y las ecuaciones de las tensiones resultantes son parecidas a las mecánicas pero con un nuevo término en función de la temperatura.

\[
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix} =
\begin{bmatrix}
\frac{E_\theta}{1 - \nu_{r\theta} \nu_{r\theta}} \left(\frac{u}{r} + \nu_{r\theta} u_r - (\alpha_\theta + \nu_{r\theta} \alpha_r) \Delta T \right) \\
\frac{E_r}{1 - \nu_{r\theta} \nu_{r\theta}} \left(\nu_{r\theta} \frac{u}{r} + u_r - (\nu_{r\theta} \alpha_\theta + \alpha_r) \Delta T \right)
\end{bmatrix}
\]

(3.4)

Estas tensiones deben cumplir la ecuación de equilibrio 2.4, ahora con la fuerza centrífuga nula, \(f_c = 0 \).

\[
\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} (\sigma_r - \sigma_\theta) = 0
\]

(3.5)

Sustituyendo y simplificando se obtiene la ecuación de desplazamiento, donde aparece un segundo término de tipo \(er^{-1} \) que es función de la dilatación térmica.

\[
u_{rr} + \frac{1}{r} u_r - \frac{a^2}{r^2} u = \frac{e}{r}
\]

(3.6)

El nuevo parámetro \(e \) depende del incremento de temperatura \(\Delta T \) y de los coeficientes de dilatación térmica, \(\alpha_\theta \) y \(\alpha_r \), además de las propiedades elásticas del material. Tiene una función parecida al factor \(b \) de la fuerza centrífuga, pero para la temperatura.

\[
e = \left[(\nu_{r\theta} - a^2) \alpha_\theta + (1 - \nu_{r\theta}) \alpha_r \right] \Delta T
\]

(3.7)
3.1.4. Desplazamiento radial en tensión plana

La ecuación del desplazamiento radial en función del radio se obtiene integrando la ecuación diferencial 3.6. Su estructura es semejante a la ecuación 2.12, sólo se modifica la función de r del segundo término que pasa a r^{-1}. Su proceso de resolución es el mismo aunque con pequeñas variaciones.

Aplicando los cambios de variable y y x, de las ecuaciones 2.14 y 2.15, se obtiene una función similar a la ecuación 2.16. Sólo se modifica el exponente de r del segundo término, ahora es negativo, y se define una nueva función $f(r)$

$$x = e^{r^{-1}} g(r)$$

Su solución es la misma ecuación 2.17, pero con una función $f(r)$ distinta. Para facilitar los cálculos se reescribe en la forma

$$f(r) = e^{r^{-1}}$$

En el producto de $f(r)$ por la función exponencial de la ecuación 2.21 aparece una nueva integral, denominada I_d, parecida a la anterior I_c.

$$\int f(r) e^{g(r)} \, dr = e \int r^{-a} (1 + r^{2a}) \, dr = e \left(\frac{r^{1-a}}{1-a} + \frac{r^{1+a}}{1+a} \right)$$

Sustituyendo ésta en la ecuación 2.17 se obtiene la ecuación de x, similar a la ecuación 2.24, con una constante de integración A'

$$x = A' \frac{r^{2a-1}}{(1 + r^{2a})^2} + e \frac{r^{2a-1}}{(1 + r^{2a})^2} \left(\frac{r^{1-a}}{1-a} + \frac{r^{1+a}}{1+a} \right)$$

Al deshacer el cambio de la ecuación 2.15 para obtener el parámetro y es necesario resolver dos integrales. La primera es idéntica a I_1 de la ecuación 2.25 y está resuelta en la ecuación 2.26 y la segunda, que introduce la constante de integración B', es nueva y se denomina I_3

$$y = A' \left(\frac{r^{2a-1}}{(1 + r^{2a})^2} \right) + e \left(\frac{r^{2a-1}}{(1 + r^{2a})^2} \left(\frac{r^{1-a}}{1-a} + \frac{r^{1+a}}{1+a} \right) \right)$$

$$= A' \frac{-1}{2a(1 + r^{2a})} + e \frac{r^{1+a}}{(1-a^2)(1 + r^{2a})} + B'$$
La integral \(I_3 \) se resuelve por partes

\[
\begin{align*}
\int_{m} &= \frac{r^{1-a}}{1-a} + \frac{r^{1+a}}{1+a} \quad dm = r^{-a} (1 + r^{2a}) \, dr \\
\int_{n} &= \frac{r^{2a-1}}{(1 + r^{2a})^2} \, dr \quad n = -\frac{1}{2a(1 + r^{2a})}
\end{align*}
\]

\[
I_3 = \frac{-1}{2a(1 + r^{2a})} \left(\frac{r^{1-a}}{1-a} + \frac{r^{1+a}}{1+a} \right) - \int \frac{-1}{2a} r^{-a} \, dr = \frac{r^{1+a}}{(1 - a^2)(1 + r^{2a})} \quad (3.13)
\]

Sustituyendo el parámetro \(y \) en la ecuación 2.14 y agrupando las constantes de integración se obtiene la expresión final del desplazamiento en función del radio

\[
u(r) = \frac{1}{r^a} A + r^a B + \frac{e}{1 - a^2} r \quad (3.14)
\]

Es similar a la ecuación 2.29 de la fuerza centrífuga, con los dos primeros sumandos son idénticos. El tercer es una función de \(r \), con el factor \(a \) de anisotropía elástica, definido en la ecuación 2.13, y el factor de temperatura \(e \), definido en la ecuación 3.7.

3.1.5. Tensiones en tensión plana

Las tensiones tangenciales y radiales de origen térmico en condiciones de tensión plana se deducen de las ecuaciones 3.4 sustituyendo el desplazamiento de la ecuación 3.14 y su derivada

\[
u_r(r) = -\frac{a}{r^{a+1}} A + a r^{a-1} B + \frac{e}{1 - a^2}
\]

A su vez, se sustituye el parámetro \(e \) de la ecuación 3.7 para que sea función directa de la temperatura

\[
\begin{align*}
\sigma_\theta(r) &= a^2 c_r \left[(1 - a \nu_{r\theta}) \frac{1}{r^{a+1}} A + (1 + a \nu_{r\theta}) r^{a-1} B + (\nu_{r\theta} \nu_{\theta r} - 1) (\alpha_\theta - \alpha_r) \frac{\Delta T}{1 - a^2} \right] \\
\sigma_r(r) &= c_r \left[(\nu_{r\theta} - a) \frac{1}{r^{a+1}} A + (\nu_{r\theta} + a) r^{a-1} B + (\nu_{r\theta}^2 - a^2) (\alpha_\theta - \alpha_r) \frac{\Delta T}{1 - a^2} \right]
\end{align*}
\]

(3.15)

Es interesante notar que el término que incluye la temperatura no depende del radio. Esto no significa que el efecto de la temperatura sobre las tensiones sea el mismo en todos radios, influye también en las constantes de integración, \(A \) y \(B \), como se verá más adelante.
En la dirección axial, la tensión es nula y la deformación axial \(\varepsilon_z \) se determina directamente con la ecuación 2.35 y las tensiones anteriores.

Las constantes de integración, \(A \) y \(B \), dependen de cada aplicación. Para el caso concreto de un cilindro de material único, y con radio interior \(r_i \) y exterior \(r_e \), valen

\[
\begin{align*}
A &= -\left(\nu_{r\theta} + a \right) \left(\alpha_{\theta} - \alpha_r \right) \frac{\Delta T}{(1 - a^2)} \left(r_i^{a+1} - r_e^{a+1} \right) \frac{r_i^{2a} - r_e^{2a}}{r_e^{2a} - r_i^{2a}}, \\
B &= \left(\nu_{r\theta} - a \right) \left(\alpha_{\theta} - \alpha_r \right) \frac{\Delta T}{(1 - a^2)} \left(r_i^{a+1} - r_e^{a+1} \right) \frac{r_i^{2a} - r_e^{2a}}{r_e^{2a} - r_i^{2a}}.
\end{align*}
\] (3.16)

3.1.6. Punto singular de la solución en tensión plana

La solución presentada en las ecuaciones 3.14 y 3.15 es válida para todos valores de \(a \), excepto para \(a = 1 \). Este punto presenta una solución singular que hay que resolver particularmente como se ha hecho en el apartado 2.2.6 para \(a = 3 \). El parámetro \(a \) es propio de cada material y el valor \(a = 1 \) corresponde, según la ecuación 2.13, a los materiales isótropos con \(E_\theta = E_r \).

Este punto singular, a efectos prácticos, es más problemático que el punto \(a = 3 \) de las tensiones centrífugas. El valor 3 corresponde a materiales que tienen una relación entre módulos elásticos de \(3^2 \), según la ecuación 2.13. En la práctica es poco probable encontrar un material que tenga una relación entre los dos módulos elásticos, determinados en ensayos experimentales, igual a 9 en todos sus decimales, como se ha comentado en el apartado 2.2.6. En cambio, si el material es isótropo se mide en una sola dirección y se asigna el mismo valor a las dos y, con lo cual, el cociente es necesariamente idéntico a 1. Por lo tanto, en los cálculos reales es muy poco probable que se produzca un error en las tensiones centrífugas, debido al punto singular \(a = 3 \), en cambio, en las térmicas se producirá siempre que el material sea isótropo.

Si en un material se cumple que \(E_\theta = E_r \) también deben ser iguales los módulos de Poisson, \(\nu_{r\theta} = \nu_{r\theta} \), para que se cumplan las igualdades de la ecuación 2.7. Con ello se simplifica el parámetro \(e \) de la ecuación 3.7

\[
e = (\nu_{r\theta} - 1) (\alpha_{\theta} - \alpha_r) \Delta T
\] (3.17)

La explicación matemática del punto singular es la misma que en las ecuaciones de las tensiones centrífugas. El segundo sumando de la integral \(I_d \) en la ecuación 3.10 no es válido para \(a = 1 \) porque la función es del tipo \(r^{-1} \) y la solución no es polinómica sino logarítmica. A la nueva integral se denomina \(I_{d1} \)

\[
\int f(r) e^{\int g(r) dr} dr = e^{\int r^{-1} \left(1 + r^2 \right) dr} = e^{\left(\ln r + \frac{r^2}{2} \right)} \] (3.18)
El primer sumando, \(\ln r \), coincide con la ecuación 2.38 de las tensiones centrífugas y su desarrollo posterior es el mismo. El segundo afecta a la integral \(I_3 \), que ahora se denomina \(I_{31} \), y se resuelve de la siguiente manera

\[
\begin{align*}
 m &= \ln r + \frac{r^2}{2} \\
 dm &= (r^{-1} + r) \, dr \\
 \frac{dn}{dr} &= \frac{r}{1 + r^2} \\
 n &= \frac{-1}{2(1 + r^2)} \\
 I_{31} &= \frac{-1}{2(1 + r^2)} \left(\ln r + \frac{r^2}{2} \right) - \int \frac{-1}{2} r^{-1} \, dr = \frac{r^2}{4} \frac{-1 + 2 \ln r}{1 + r^2} \tag{3.19}
\end{align*}
\]

Finalmente la ecuación de desplazamiento queda

\[u(r) = \frac{1}{r} A + r B - \frac{e}{4} r + \frac{e}{2} r \ln r \tag{3.20} \]

y las tensiones derivadas de ésta valen

\[
\begin{align*}
 \sigma_\theta(r) &= c_r \left[(1 - \nu_{r\theta}) \frac{1}{r^2} A + (1 + \nu_{r\theta}) B + \frac{e}{2} (1 + \nu_{\theta r}) \ln r \\
 &+ \frac{e}{4} (-1 + \nu_{\theta r}) - (\alpha_\theta + \nu_{\theta r} \alpha_r) \Delta T \right] \\
 \sigma_r(r) &= c_r \left[(\nu_{r\theta} - 1) \frac{1}{r^2} A + (\nu_{r\theta} + 1) B + \frac{e}{2} (\nu_{r\theta} + 1) \ln r \\
 &+ \frac{e}{4} (-\nu_{r\theta} + 1) - (\nu_{r\theta} \alpha_\theta + \alpha_r) \Delta T \right] \tag{3.21}
\end{align*}
\]

Son parecidas a las ecuaciones generales 3.15 pero no se sustituye el parámetro \(e \), porque no supone ninguna simplificación.

Las constantes de integración de un cilindro simple para \(a = 1 \) son

\[
\begin{align*}
 A &= -\frac{e}{2} \frac{\nu_{r\theta} + 1}{\nu_{r\theta} - 1} \frac{r_i^2}{r_i^2 - r_e^2} \left(\ln r_i - \ln r_e \right) \\
 B &= \frac{e}{2} \left(\frac{r_e^2 \ln r_i - r_i^2 \ln r_e}{r_i^2 - r_e^2} \right) + \frac{e}{4} \frac{\nu_{r\theta} - 1}{\nu_{r\theta} + 1} + \frac{(\nu_{r\theta} \alpha_\theta + \alpha_r) \Delta T}{\nu_{r\theta} + 1} \tag{3.22}
\end{align*}
\]

Si se aplica a un material que además de tener \(a = 1 \), o sea, con propiedades elásticas iguales en las direcciones \(\theta \) y \(r \), también son iguales en la dirección \(z \) y lo mismo para las propiedades térmicas, el cálculo tiene interés para comprobar la coherencia del sistema. En estas condiciones los coeficientes de dilatación son iguales, \(\alpha_\theta = \alpha_r = \alpha_z = \alpha \), y el factor de temperatura \(e \) de la ecuación 3.17 vale cero. En las ecuaciones de las tensiones
3.1. TENSIONES TÉRMICAS ORIGINADAS EN EL CURADO

3.21 se anulan los términos en e pero no se elimina totalmente el efecto de la temperatura, permanece en el último sumando. Las tensiones térmicas no son necesariamente nulas, es preciso aplicar las condiciones de contorno para determinar su valor.

Si además de estas condiciones del material el rotor es de un sólo material, las tensiones térmicas son nulas. Las constantes de integración, determinadas en la ecuación 3.22, valen $A = 0$ y $B = \alpha \Delta T$. Los resultados del desplazamiento 3.20 y de las tensiones 3.21 son totalmente lógicos: el rotor se dilata pero no tiene tensiones térmicas.

$$u(r) = \alpha \Delta T \quad ; \quad \sigma_\theta(r) = 0 \quad ; \quad \sigma_r(r) = 0$$

3.1.7. Ejemplo calculado en tensión plana

Las ecuaciones anteriores, en condiciones de tensión plana, se aplican a un ejemplo de rotor simple para observar las tensiones residuales y compararlas, al igual que en los ejemplos de las tensiones centrífugas, a los resultados obtenidos en un modelo de elementos finitos. Se aplica al mismo rotor de la tensión centrífuga en la sección 2.2.7, fabricado con fibra de vidrio orientada a 0° y con radios $r_i = 0.3$ m y $r_e = 0.5$ m. Los coeficientes de dilatación son $\alpha_\theta = 8.6$ y $\alpha_r = 22.1 \times 10^{-6}/^\circ\text{C}$ y se somete a $\Delta T = -100$ °C.

En la figura 3.3 se representan el desplazamiento y las tensiones residuales en función del radio, expresado en valores unitarios. El gráfico del desplazamiento está calculado mediante la ecuación 3.14 y la tensión tangencial y radial con la ecuación 3.15, esta última con un factor de escala 10.

![Figura 3.3: Desplazamiento radial y tensiones residuales de origen térmico, en condiciones de tensión plana.](image)

Se observa que el desplazamiento radial es negativo y la contracción es mucho mayor en el exterior que en el interior. A pesar de ello la tensión radial es positiva, o sea que entre
CAPÍTULO 3. TENSIONES RESIDUALES DEL MATERIAL

Figura 3.4: Comparación de las tensiones residuales térmicas con los resultados obtenidos en MEF.

la zona exterior e interior existe tracción radial, tal como se muestra en la figura 3.2. La tensión tangencial es casi simétrica, de tracción en el interior y de compresión en el exterior, y la suma suma total es nula.

Hay que destacar que los gráficos de tensiones tienen la misma forma que los generados por la fuerza centrífuga, expuestos en la figura 2.6. Tienen el mismo signo y los valores máximos se hallan en la misma región: la tensión tangencial es máxima en el radio interior y la radial en el centro. Los valores máximos de las tensiones térmicas y centrífugas se suman y disminuye la resistencia del rotor, de ahí que, las tensiones residuales térmicas son claramente perjudiciales.

El cálculo con elementos finitos se realiza con el mismo modelo que en el ejemplo de tensiones centrífugas de la sección 2.27. Los resultados se presentan en la figura 3.4, junto con los resultados de las ecuaciones de la figura 3.3 y se observa que su la equivalencia es muy buena: es casi perfecta en la tensión tangencial y tiene una ligera desviación en la radial. Esta diferencia está en función de la posición axial elegida para leer los resultados del MEF; los correspondientes a un radio situado sobre el centro axial del cilindro, o sea en \(z = l/2 \), son más elevados y los del extremo, en \(z = 0 \), están por debajo.

3.1.8. Cálculo en condiciones de deformación plana

El resultado anterior se complementa con el cálculo en condiciones de deformación plana. El proceso es el mismo que en tensión plana pero con algunas variaciones, similares a las del capítulo de fuerzas centrífugas.

La deformación plana se aplica con la condición de \(\varepsilon_z = 0 \) en la ecuación constitutiva del material 3.1, de donde se deduce
3.1. TENSIONES TÉRMICAS ORIGINADAS EN EL CURADO

\[\varepsilon_z = -\frac{\nu_{z\theta}}{E_{\theta}} \sigma_{\theta} - \frac{\nu_{zr}}{E_r} \sigma_r \frac{1}{E_z} \sigma_z + \alpha_z \Delta T = 0 \]

(3.23)

y la tensión axial es

\[\sigma_z = E_z \left(\frac{\nu_{z\theta}}{E_{\theta}} \sigma_{\theta} + \frac{\nu_{zr}}{E_r} \sigma_r - \alpha_z \Delta T \right) \]

(3.24)

Sustituyendo \(\sigma_z \) en el propio sistema 3.1 se obtienen las expresiones de \(\varepsilon_{\theta} \) y \(\varepsilon_r \) en función de las tensiones \(\sigma_r \) y \(\sigma_{\theta} \)

\[
\begin{align*}
\varepsilon_{\theta} &= \frac{1 - \nu_{z\theta} \nu_{zr}}{E_{\theta}} \sigma_{\theta} - \left(\frac{\nu_{\theta r}}{E_r} + \frac{\nu_{z\theta} \nu_{zr}}{E_r} \right) \sigma_r + \left(\alpha_{\theta} + \nu_{z\theta} \alpha_z \right) \Delta T \\
\varepsilon_r &= -\left(\frac{\nu_{r\theta} + \nu_{rz} \nu_{z\theta}}{E_{\theta}} \right) \sigma_{\theta} + \frac{1 - \nu_{rz} \nu_{zr}}{E_r} \sigma_r + \left(\alpha_r + \nu_{rz} \alpha_z \right) \Delta T
\end{align*}
\]

(3.25)

Si se reescriben en la forma de la ecuación 2.50 aparecen los mismos parámetros \(p, q \) y \(s \), definidos en la ecuación 2.48, pero con un nuevo término que contiene el efecto de la temperatura

\[
\begin{align*}
\begin{bmatrix}
\varepsilon_{\theta} \\
\varepsilon_r
\end{bmatrix}
= \begin{bmatrix}
s & -q \\
-q & p
\end{bmatrix}
\begin{bmatrix}
\sigma_{\theta} \\
\sigma_r
\end{bmatrix}
+ \begin{bmatrix}
\alpha_{\theta} + \nu_{z\theta} \alpha_z \\
\alpha_r + \nu_{rz} \alpha_z
\end{bmatrix} \Delta T
\end{align*}
\]

(3.26)

Las deformaciones se sustituyen por el desplazamiento radial de las ecuaciones 2.5 y se obtienen las tensiones

\[
\begin{align*}
\sigma_{\theta} &= \frac{p}{ps - q^2} \left[\frac{u}{r} + \frac{q}{p} u_r - \left(\alpha_{\theta} + \frac{q}{p} \alpha_r + \left(\nu_{z\theta} + \frac{q}{p} \nu_{rz} \right) \alpha_{z} \right) \Delta T \right] \\
\sigma_r &= \frac{s}{ps - q^2} \left[\frac{q u}{s} r + u_r - \left(\frac{q}{s} \alpha_{\theta} + \alpha_r + \left(\frac{q}{s} \nu_{z\theta} + \nu_{rz} \right) \alpha_{z} \right) \Delta T \right]
\end{align*}
\]

(3.27)

Sustituidas en la ecuación de equilibrio 3.5 se deduce una ecuación de desplazamiento idéntica que en el estado plano de la ecuación 3.6, pero con los parámetros \(a \) y \(e \) distintos. El primero coincide con la definición de la ecuación 2.53 de las tensiones centrífugas y el segundo se define de la siguiente forma

\[e = \left[\left(\frac{q}{s} - a^2 \right) \alpha_{\theta} + \left(1 - \frac{q}{s} \right) \alpha_r + \left(\frac{q}{s} - a^2 \right) \nu_{z\theta} + \left(1 - \frac{q}{s} \right) \nu_{rz} \right] \alpha_{z} \Delta T \]

(3.28)

La solución de la ecuación del desplazamiento radial es la misma que en tensión plana, expresada en la ecuación 3.14. En este caso el desplazamiento radial es función también...
del coeficiente de dilatación térmica axial \(\alpha_z \), aplicado dentro del parámetro \(e \) de la ecuación 3.28.

Las tensiones se obtienen sustituyendo el desplazamiento en las ecuaciones 3.27

\[
\sigma_\theta(r) = a^2 c_r \left[\left(1 - \frac{q}{p} \right) \frac{1}{r^{a+1}} A + \left(1 + \frac{q}{s} \right) r^{a-1} \frac{1}{1-a^2} \right] \\
+ \left(\frac{q^2}{ps} - 1 \right) \frac{1}{1-a^2} \left[\alpha_\theta - \alpha_r + (\nu_{\theta z} - \nu_{r z}) \alpha_z \right] \frac{\Delta T}{1-a^2}
\]

\[
\sigma_r(r) = c_r \left[\left(\frac{q}{s} - a \right) \frac{1}{r^{a+1}} A + \left(\frac{q}{s} + a \right) r^{a-1} \frac{1}{1-a^2} \right] \\
+ \left(\frac{q^2}{s^2} + a^2 \right) \frac{1}{1-a^2} \left[\alpha_\theta - \alpha_r + (\nu_{\theta z} - \nu_{r z}) \alpha_z \right] \frac{\Delta T}{1-a^2}
\]

La tensión \(\sigma_z \) se deduce directamente de la ecuación 3.24

\[
\sigma_z(r) = \nu_{\theta z} \sigma_\theta + \nu_{r z} \sigma_r - E_z \alpha_z \Delta T
\]

Las constantes de integración \(A \) y \(B \) dependen de las condiciones de contorno y para el caso de un cilindro simple de un solo material valen

\[
\begin{align*}
A &= - \left(\frac{q}{s} + a \right) \frac{1}{1-a^2} \left[\alpha_\theta - \alpha_r + (\nu_{\theta z} - \nu_{r z}) \alpha_z \right] \Delta T \\
B &= \left(\frac{q}{s} - a \right) \frac{1}{1-a^2} \left[\alpha_\theta - \alpha_r + (\nu_{\theta z} - \nu_{r z}) \alpha_z \right] \Delta T
\end{align*}
\]

Esta solución presenta el mismo punto singular que en tensión plana para \(a = 1 \). En este caso el parámetro \(e \) se simplifica

\[
e = \left(\frac{q}{s} - 1 \right) \left[\alpha_\theta - \alpha_r + (\nu_{\theta z} - \nu_{r z}) \alpha_z \right] \Delta T
\]

La solución particular se obtiene con el mismo proceso de la tensión plana, a partir de la ecuación 3.18. El desplazamiento se calcula con la misma ecuación, 3.20, pero con parámetros propios, y las tensiones con las ecuaciones
3.1. TENSIONES TÉRMICAS ORIGINADAS EN EL CURADO

\[\sigma_\theta(r) = c_r \left[\left(1 - \frac{q}{p}\right) \frac{1}{r^2} A + \left(1 + \frac{q}{p}\right) B + \frac{e}{2} \left(1 + \frac{q}{p}\right) \ln r \right] \]

\[+ \frac{e}{4} \left(-1 + \frac{q}{p}\right) - \left(\alpha_\theta + \frac{q}{p} \alpha_r + \left(\nu_{r\theta} + \nu_{rz}\right) \alpha_z\right) \Delta T \]

\[\sigma_r(r) = c_r \left[\left(\frac{q}{p} - 1\right) \frac{1}{r^2} A + \left(\frac{q}{p} + 1\right) B + \frac{e}{2} \left(\frac{q}{p} + 1\right) \ln r \right] \]

\[+ \frac{e}{4} \left(-\frac{q}{p} + 1\right) - \left(\frac{q}{p} \alpha_\theta + \alpha_r + \left(\frac{q}{p} \nu_{r\theta} + \nu_{rz}\right) \alpha_z\right) \Delta T \]

Si el material es isótropo en las propiedades elásticas y en las térmicas el resultado se simplifica. El coeficiente de dilatación \(\alpha \) es único para las tres direcciones y el parámetro térmico \(e \) de la ecuación 3.32 es nulo. Pero las tensiones no se anulan directamente porque dependen de las condiciones de contorno.

Aplicando este material isótropo al cilindro simple las constantes de integración de la ecuación 3.31 valen \(A = 0 \) y \(B = (1 + \nu) \alpha \Delta T \). El desplazamiento se reduce a una simple dilatación isótropa y las tensiones, tangencial y radial, son nulas, pero la axial no. Su valor es poco real, tal como se estudiará en el capítulo 4.

\[u(r) = (1 + \nu) \alpha \Delta T \]; \quad \sigma_\theta(r) = 0 \]; \quad \sigma_r(r) = 0 \]; \quad \sigma_z = -E_z \alpha_z \Delta T \]

3.1.9. Ejemplo calculado en deformación plana

Las ecuaciones deducidas para deformación plana se aplican a continuación a un rotor simple con los mismos datos que el ejemplo de tensión plana del apartado 3.1.7. Los resultados de la ecuación de desplazamiento 3.14 y las ecuaciones de tensiones 3.29 se presentan en la figura 3.5.

Se observa que la forma de los gráficos es la misma que en tensión plana, pero los valores son muy distintos. En el desplazamiento radial se incrementa la pendiente, su valor mínimo de \(-0,55 \) se incrementa hasta \(-0,75 \) mm. En las tensiones la diferencia es mayor, los valores se multiplican por dos. No es lógico tener unas diferencias tan grandes por el simple cambio de condiciones de cálculo, luego es dudosa la validez de las ecuaciones en deformación plana.

Para estudiar estos resultados se comparan con los obtenidos mediante un modelo de elementos finitos. Esta comparación es especialmente útil para resolver las dudas comentadas anteriormente sobre la validez de las ecuaciones. Se utiliza, para el ejemplo, el mismo modelo que en las tensiones centrífugas de la sección 2.2.10 pero aplicando un incremento de temperatura de \(-100^\circ C \) igual que en el ejemplo de tensión plana. Las tensiones, tangencial y radial, obtenidas en MEF, para los puntos de un radio situado a
CAPÍTULO 3. TENSIONES RESIDUALES DEL MATERIAL

1/2, se representan en la figura 3.6 y comparan con los resultados de las ecuaciones de la figura 3.5.

Figura 3.5: Deformación y tensiones residuales térmicas para deformación plana.

Se observa que los resultados del cálculo en MEF son idénticos que los de las ecuaciones, incluso son más coincidentes que los de tensión plana del gráfico 3.4. En consecuencia, la diferencia entre los resultados de tensión plana y deformación plana no depende de las ecuaciones de cálculo sino de las propias condiciones del sistema. En ambos casos la resolución es correcta, en cambio, las condiciones de cálculo son dudosas.

Estudiando estos resultados se observa que la condición de deformación plana no es válida para estudiar las tensiones térmicas. En un material compuesto con las fibras orientadas en una sola dirección, como se representa en la figura 3.1, el coeficiente de dilatación en dirección longitudinal a las fibras \(\alpha_L \) es casi nulo mientras que en dirección transversal \(\alpha_T \) es elevado. Si el rotor tiene las fibras orientadas tangencialmente se generan dilataciones térmicas en la dirección axial grandes, pero si se restringe la deformación en esta dirección se crean tensiones axiales elevadas. En el ejemplo se observa que el valor de la tensión axial es muy grande, del mismo orden que la tangencial. Este valor anormal distorsiona las tensiones en las otras dos direcciones y su valor aumenta artificialmente.

En las tensiones centrífugas este fenómeno no existe porque la fuerza centrífuga crea solamente deformación tangencial y radial, y la axial es prácticamente nula. La deformación axial, creada por el efecto Poisson de las deformaciones tangencial y radial, es pequeña y la tensión axial inducida también es reducida.

3.1.10. Consideraciones para fibras axiales

Las tensiones térmicas generadas en un rotor con fibras orientadas en dirección axial, a 90°, son poco importantes. Si el material fuese totalmente homogéneo, sólo con fibra a
3.1. TENSIONES TÉRMICAS ORIGINADAS EN EL CURADO

Figura 3.6: Comparación de las tensiones residuales térmicas calculadas con las de MEF.

90°, serían nulas; pero si se combina con capas a 0° o con otros materiales, aluminio por ejemplo, aparecen las tensiones térmicas.

Los coeficientes de dilatación en las direcciones tangencial y radial son iguales y corresponden con el coeficiente transversal del material α_T, como se muestra en la figura 3.7. En este plano tangencial-radial, donde la estructura es cerrada, no se crean distorsiones y, por lo tanto, tampoco tensiones térmicas. En la dirección axial el coeficiente coincide con el longitudinal α_L, distinto de los otros, pero tampoco crea distorsiones porque las deformaciones son libres.

Figura 3.7: Propiedades térmicas en fibras axiales.

No ocurre lo mismo si se combinan con capas a 0° o con otros materiales de distinto coeficiente de dilatación, se crean distorsiones y tensiones residuales. Para ello, es necesario conocer el comportamiento térmico del material con fibras a 90°.

Como en los casos anteriores se determinan primero las ecuaciones en condiciones de tensión plana. En las direcciones tangencial y radial las propiedades elásticas se cumplen
las igualdades de la ecuación 2.61 y en las térmicas \(\alpha_\theta = \alpha_r \), ambas corresponden a la dirección transversal de la fibra.

En el análisis de las tensiones se siguen los mismos pasos que para fibras a \(0^\circ \), pero con notables simplificaciones. Los parámetros \(a \) y \(e \), definidos en las ecuaciones 2.13 y 3.7, se determinan aplicando las igualdades entre las propiedades elásticas, en la ecuación 2.61, y entre las térmicas \(\alpha_\theta = \alpha_r \)

\[
a = \sqrt{\frac{E_\theta}{E_r}} = 1 \quad ; \quad e = \left[(\nu_{r\theta} - a^2) \alpha_\theta + (1 - \nu_{r\theta}) \alpha_r \right] \Delta T = 0
\]

El parámetro \(a \), propio del material, coincide con el valor del punto singular de las ecuaciones térmicas anteriores y el parámetro \(e \), referente al incremento de temperatura, es nulo. La ecuación de desplazamiento 3.6 se simplifica

\[
u_{rr} + \frac{1}{r} u_r - \frac{1}{r^2} u = 0 \quad (3.34)
\]

Las ecuaciones de desplazamiento y tensiones se determinan mediante el mismo proceso que en el caso particular de \(a = 1 \) de las ecuaciones 3.20 y 3.21,

\[
\begin{align*}
 u(r) & = \frac{1}{r} A + r \ B \\
 \sigma_\theta(r) & = c_r \left[(1 - \nu_{r\theta}) \frac{1}{r^2} A + (a + \nu_{r\theta}) B - (1 - \nu_{r\theta}) \alpha_r \Delta T \right] \\
 \sigma_r(r) & = c_r \left[(\nu_{r\theta} - 1) \frac{1}{r^2} A + (\nu_{r\theta} + 1) B - (\nu_{r\theta} - 1) \alpha_r \Delta T \right]
\end{align*}
\]

En un cilindro simple, de un solo material y extremos libres, las constantes de contorno son: \(A = 0 \) y \(B = \alpha_r \Delta T \). El desplazamiento se reduce a la simple deformación térmica y las tensiones son nulas.

\[
u(r) = \alpha_r \Delta T \quad ; \quad \sigma_\theta(r) = 0 \quad ; \quad \sigma_r(r) = 0
\]

En el análisis en condiciones de deformación plana se aplican las igualdades entre propiedades del material de la ecuación 2.61. En los parámetros definiciones en la ecuación 2.48 se cumple que \(p = s \), y los parámetros \(a \) y \(e \), definidos en 2.53 y 3.28, toman los mismos valores que en tensión plana

\[
a = \sqrt{\frac{p}{s}} = 1 \\
e = \left[\left(\frac{q}{s} - a^2 \right) \alpha_\theta + (1 - \frac{q}{s}) \alpha_r + \left[\left(\frac{q}{s} - a^2 \right) \nu_{\theta z} (1 - \frac{q}{s}) \nu_{rz} \right] \alpha_z \right] \Delta T = 0
\]
3.2. TENSIONES RESIDUALES POR HIDRATACIÓN

La ecuación de desplazamiento coincide con la ecuación 3.35(1) de tensión plana. Las ecuaciones de las tensiones, tangencial y radial, se deducen como en el caso singular de \(a = 1 \) de las ecuaciones 3.33. La tensión axial de la ecuación 3.30 se modifica por la igualdad entre propiedades del material

\[
\begin{align*}
\sigma_\theta(r) &= c_r \left[\left(1 - \frac{q}{p}\right) \frac{1}{r^2} A + \left(1 + \frac{q}{s}\right) B - \left(1 + \frac{q}{p}\right) (\alpha_r + \nu_{rz}\alpha_z)\Delta T \right] \\
\sigma_r(r) &= c_r \left[\left(\frac{q}{s} - 1\right) \frac{1}{r^2} A + \left(\frac{q}{s} + 1\right) B - \left(\frac{q}{s} + 1\right) (\alpha_r + \nu_{rz}\alpha_z)\Delta T \right] \\
\sigma_z(r) &= \nu_{rz}(\sigma_\theta + \sigma_r) - E_z \alpha_z \Delta T
\end{align*}
\]

(3.36)

Las constantes \(A \) y \(B \) se determinan mediante las condiciones de contorno. Si se aplica a un cilindro simple las constantes de integración son

\[A = 0 \quad ; \quad B = (\alpha_r + \nu_{rz}\alpha_z) \Delta T \]

y el desplazamiento se reduce a una dilatación térmica, mientras que las tensiones, tangencial y radial, son nulas. En cambio, la tensión axial es distinta de cero, pero su valor no es real como se comenta en el apartado 3.1.8.

\[u(r) = (\alpha_r + \nu_{rz}\alpha_z) \Delta T \quad ; \quad \sigma_\theta(r) = 0 \quad ; \quad \sigma_r(r) = 0 \quad ; \quad \sigma_z(r) = -E_z \alpha_z \Delta T \]

Con estas fórmulas, junto con las deducidas en los apartados anteriores, se pueden calcular rotores con capas alternas 0° y 90°. Este tipo de estructura están estudiadas en el artículo de Tzeng y Pipes (1992) [52]

3.2. Tensiones residuales por hidratación

3.2.1. Absorción de humedad

Los materiales compuestos también adquieren tensiones residuales debido a la hidratación de la resina. El proceso de absorción de humedad ambiental es muy lento hasta alcanzar la saturación, y supone un pequeño aumento de peso del material y una cierta dilatación de la matriz. Para el caso del rotor, el primero es poco importante y no afecta a la inercia, pero el segundo crea tensiones residuales parecidas a las tensiones térmicas.

Algunos autores, por ejemplo Springer y Tsai (1981) [47], estudian las tensiones generadas por la absorción conjuntamente con las de origen térmico, porque sus procesos de formación a través de las deformaciones es parecido. Aquí, en cambio, se analizan por separado, aunque en el cálculo global del rotor se incluyen ambas dentro del sistema único.
CAPÍTULO 3. TENSIONES RESIDUALES DEL MATERIAL

de ecuaciones. Para el diseño es conveniente separarlas porque las tensiones aparecen en momentos de distintos de la vida del rotor. Las térmicas se generan en la fabricación y permanecen casi constantes a lo largo de la vida del material, en cambio, las de hidratación se aparecen durante el uso, a medida que el material absorbe la humedad ambiental. Si el espesor de la pieza es de pocos milímetros dura pocos días, pero si es grande dura años, o incluso toda la vida. En los rotores, donde el espesor es grande, al inicio de su vida tienen solamente tensiones térmicas y con el tiempo aparecen las de hidratación.

La deformación unitaria \(\varepsilon \) generada en una resina por hidratación es función del aumento de la humedad \(\Delta c \) y del coeficiente de dilatación por hidratación \(\beta \)

\[
\varepsilon = \beta \Delta c
\]

En un material compuesto la dilatación de la resina queda distorsionada por las fibras, de forma similar a la dilatación térmica del apartado 3.1.1. Si las fibras están orientadas en una sola dirección, como se muestra en la figura 3.8, la dilatación en la dirección de la fibra es distinta que en las otras dos. En ella, la rigidez de la fibra retiene a la matriz, y la dilatación global es muy baja, mientras que en las direcciones perpendiculares la matriz se dilata libremente.

Esta diferencia de dilataciones da lugar a coeficientes distintos, en las dirección de la fibra se denomina coeficiente longitudinal \(\beta_L \) y en las otras direcciones coeficiente transversal \(\beta_T \). En un rotor los coeficientes de dilatación se expresan en coordenadas cilíndricas \(\beta_r \), \(\beta \), y \(\beta_z \), y toman los valores \(\beta_L \) o \(\beta_T \) según la orientación de las fibras, igual que los coeficientes térmicos.

El mecanismo de generación de tensiones residuales en el rotor es el mismo que en las tensiones térmicas descrito en el apartado 3.1.1. Si las fibras están orientadas circunferencialmente la hidratación genera una dilatación radial mayor que la tangencial porque \(\beta_T \) es mayor que \(\beta_L \). A su vez, siguiendo el mismo razonamiento de la figura 3.2 del térmico, estas dilataciones generan tensiones residuales en dirección radial y tangencial.
Las tensiones residuales de hidratación son de signo contrario a las térmicas; en el enfriamiento el material se contraía mientras en la hidratación dilata. Luego, es interesante notar que las tensiones residuales de ambos fenómenos se contrarrestan.

3.2.2. Tensiones en condiciones de tensión plana

El proceso analítico de cálculo de tensiones residuales por hidratación es igual que en el térmico. La ecuación del material 3.38 se obtiene de la ecuación 2.6 añadiendo las deformaciones por hidratación. Es idéntica a la ecuación 3.1 del térmico pero con los coeficientes de dilatación por hidratación β, y grado de humedad Δc.

\[
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r \\
\varepsilon_z
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{E_\theta} - \frac{\nu_{\theta r}}{E_r} - \frac{\nu_{\theta z}}{E_z} \\
\frac{\nu_{r\theta}}{E_\theta} - \frac{1}{E_r} - \frac{\nu_{rz}}{E_z} \\
-\frac{\nu_{z\theta}}{E_\theta} - \frac{\nu_{zx}}{E_r} - \frac{1}{E_z}
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r \\
\sigma_z
\end{bmatrix} +
\begin{bmatrix}
\beta_\theta \\
\beta_r
\end{bmatrix} \Delta c
\] (3.38)

En condiciones de tensión plana se reduce a dos direcciones

\[
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{E_\theta} - \frac{\nu_{\theta r}}{E_r} \\
-\frac{\nu_{r\theta}}{E_\theta} - \frac{1}{E_r}
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix} +
\begin{bmatrix}
\beta_\theta \\
\beta_r
\end{bmatrix} \Delta c
\] (3.39)

Siguiendo el mismo proceso que el apartado 3.1.3 se obtiene la ecuación de desplazamiento, muy parecida a la ecuación 3.6 del térmico, con un nuevo parámetro g, función de la humedad Δc.

\[
u_{rr} + \frac{1}{r} u_r - \frac{a^2}{r^2} u = \frac{g}{r}
\] (3.40)

\[g = \left[(\nu_{r\theta} - a^2) \alpha_\theta + (1 - \nu_{r\theta}) \alpha_r \right] \Delta c
\] (3.41)

Siguiendo los mismos pasos la ecuación del desplazamiento radial es

\[u(r) = \frac{1}{r^a} A + r^a B + \frac{g}{1 - a^2} r
\] (3.42)

y de las tensiones son
\[
\begin{align*}
\sigma_\theta (r) &= a^2 c_r \left[(1 - \alpha \nu_\theta) \frac{1}{r^{a+1}} A + (1 + \alpha \nu_\theta) r^{a-1} B + (\nu_\theta \nu_\theta - 1) (\beta_\theta - \beta_r) \frac{\Delta c}{1 - a^2} \right] \\
\sigma_r (r) &= c_r \left[(\nu_\theta - a) \frac{1}{r^{a+1}} A + (\nu_\theta + a) r^{a-1} B + (\nu_\theta^2 - a^2) (\beta_\theta - \beta_r) \frac{\Delta c}{1 - a^2} \right]
\end{align*}
\]

(3.43)

En un cilindro simple de material único las constantes de integración son

\[
\begin{align*}
A &= - \frac{(\nu_\theta + a) (\beta_\theta - \beta_r) \Delta c}{(1 - a^2)} \frac{r^{2a} r_i^{a+1} - r_e^{2a} r_i^{a+1}}{r_e^{2a} - r_i^{2a}} \\
B &= \frac{(\nu_\theta - a) (\beta_\theta - \beta_r) \Delta c}{(1 - a^2)} \frac{r_i^{a+1} - r^{a+1}}{r_e^{2a} - r_i^{2a}}
\end{align*}
\]

(3.44)

Esta solución no es válida en el punto singular para \(a = 1 \). Para este valor el parámetro \(g \) queda

\[
g = (\nu_\theta - 1) (\beta_\theta - \beta_r) \Delta c
\]

(3.45)

y el desplazamiento radial y las tensiones son:

\[
u(r) = \frac{1}{r} A + r B - \frac{g}{4} r + \frac{g}{2} r \ln r
\]

(3.46)

\[
\begin{align*}
\sigma_\theta (r) &= c_r \left[(1 - \nu_\theta) \frac{1}{r^2} A + (1 + \nu_\theta) B + \frac{e}{2} (1 + \nu_\theta) \ln r \\
&+ \frac{e}{4} (1 + \nu_\theta) - (\beta_\theta + \nu_\theta \beta_r) \Delta c \right] \\
\sigma_r (r) &= c_r \left[(\nu_\theta - 1) \frac{1}{r^2} A + (\nu_\theta + 1) B + \frac{e}{2} (\nu_\theta + 1) \ln r \\
&+ \frac{e}{4} (1 - \nu_\theta + 1) - (\nu_\theta \beta_\theta + \beta_r) \Delta c \right]
\end{align*}
\]

(3.47)

Las constantes de integración para un cilindro simple son las mismas que en el térmico pero cambiando el parámetro térmico \(e \) por el de hidratación \(g \).

Si el material es isótropo en las propiedades elásticas y en los coeficientes de absorción, \(\beta_\theta = \beta_r = \beta \), el parámetro \(g \) es nulo pero las tensiones no son nulas. Si se aplica a un cilindro de material único las constantes de contorno son \(A = 0 \) y \(B = \beta \Delta c \) y los desplazamientos y las tensiones son

\[
u(r) = \beta \Delta c \quad ; \quad \sigma_\theta (r) = 0 \quad ; \quad \sigma_r (r) = 0
\]
3.2. TENSIONES RESIDUALES POR HIDRATACIÓN

Para comprobar los resultados se presenta un ejemplo aplicado al rotor de los apartados anteriores, con iguales dimensiones y el mismo material, y se somete a un incremento de humedad del 0,5%.

![Figura 3.9: Desplazamiento radial y tensiones residuales de un cilindro con un incremento de humedad del 0,5%, calculados en tensión plana](image)

En la figura 3.9 se observa que los resultados son parecidos a los del caso térmico de la figura 3.3 pero de signo contrario. El desplazamiento aumenta con el radio, al revés que el térmico, y con un valor medio alrededor de cero. La tensión tangencial también crece con el radio y la radial es negativa. Son de signo contrario a las creadas por la fuerza centrífuga y favorecen las tensiones finales del rotor.

3.2.3. Condiciones de deformación plana

En el cálculo en condiciones de tensión plana se determinan las deformaciones y las tensiones siguiendo el mismo proceso que en el apartado 3.1.7, pero partiendo de la ecuación 3.38.

La ecuación del desplazamiento radial es la misma que en tensión plana mostrada en la ecuación 3.42, pero con un parámetro g distinto

$$g = \left\{ \left(\frac{q}{s} - a^2 \right) \beta_0 + \left(1 - \frac{q}{s} \right) \beta_r + \left[\left(\frac{q}{s} - a^2 \right) \nu_{xz} + \left(1 - \frac{q}{s} \right) \nu_{xz} \right] \beta_z \right\} \Delta c \quad (3.48)$$

en donde p, q y s están definidos en las ecuaciones 2.48 y a en 2.53. Las tensiones son ahora:
CAPÍTULO 3. TENSIONES RESIDUALES DEL MATERIAL

\[\sigma_\theta(r) = a^2 c_r \left[\left(1 - a \frac{q}{p}\right) \frac{1}{r^{a+1}} A + \left(1 + a \frac{q}{s}\right) r^{a-1} B \right. \]
\[+ \left(\frac{q^2}{ps} - 1 \right) \left[\beta_\theta - \beta_r + (\nu_{\theta z} - \nu_{rz}) \beta_z \right] \frac{\Delta c}{1 - a^2} \]

\[\sigma_r(r) = c_r \left[\left(\frac{q}{s} - a\right) \frac{1}{r^{a+1}} A + \left(\frac{q}{s} + a\right) r^{a-1} B \right. \]
\[+ \frac{q^2}{s^2} - a^2 \left[\beta_\theta - \beta_r + (\nu_{\theta z} - \nu_{rz}) \beta_z \right] \frac{\Delta c}{1 - a^2} \]

(3.49)

y la tensión axial es

\[\sigma_z(r) = \nu_{\theta z} \sigma_\theta + \nu_{rz} \sigma_r - E_z \beta_z \Delta c \]

(3.50)

Las constantes de integración en el caso de un cilindro simple son

\[
\begin{align*}
A &= -\left(\frac{q}{s} + a\right) \frac{[\beta_\theta - \beta_r + (\nu_{\theta z} - \nu_{rz}) \beta_z] \Delta c}{1 - a^2} \frac{r_2^{a+1} r_1^{a+1} - r_1^{2a} r_2^{2a}}{r_2^{2a} - r_1^{2a}} \\
B &= \left(\frac{q}{s} - a\right) \frac{[\beta_\theta - \beta_r + (\nu_{\theta z} - \nu_{rz}) \beta_z] \Delta c}{1 - a^2} \frac{r_1^{a+1} r_2^{a+1} - r_1^{2a} r_2^{2a}}{r_2^{2a} - r_1^{2a}}
\end{align*}
\]

(3.51)

Esta solución tiene el mismo punto singular que en el térmico, en \(a = 1 \). El parámetro \(g \) se simplifica y queda

\[g = \left\{ \left(\frac{q}{s} - 1\right) \left[\beta_\theta - \beta_r + (\nu_{\theta z} - \nu_{rz}) \beta_z \right] \right\} \Delta c \]

(3.52)

La ecuación del desplazamiento radial es la misma que en tensión plana, ecuación 3.46, y las tensiones valen

\[\sigma_\theta(r) = c_r \left[\left(1 - \frac{q}{p}\right) \frac{1}{r^2} A + \left(1 + \frac{q}{p}\right) B + \frac{q}{2} \left(1 + \frac{q}{p}\right) \ln r \right. \]
\[+ \frac{q}{4} \left(1 + \frac{q}{p}\right) - \left(\frac{q}{p} + \frac{1}{p}\right) \left(\frac{1}{p} \beta_\theta + \frac{1}{p} \beta_r + \left(\nu_{\theta z} + \nu_{\theta z} \right) \beta_z \right) \Delta c \]

(3.53)

\[\sigma_r(r) = c_r \left[\left(\frac{q}{p} - 1\right) \frac{1}{r^2} A + \left(\frac{q}{p} + 1\right) B + \frac{q}{2} \left(\frac{q}{p} + 1\right) \ln r \right. \]
\[+ \frac{q}{4} \left(-1 + \frac{q}{p}\right) - \left(\frac{q}{p} \beta_\theta + \beta_r + \left(\frac{q}{p} \nu_{\theta z} + \nu_{\theta z} \right) \beta_z \right) \Delta c \]

Aplicando las ecuaciones 3.38 y 3.39 al ejemplo de tensión plana se obtienen los resultados de la figura 3.10. Se observa que los gráficos tienen la misma forma, invertidos respecto del térmico incluida la tensión axial. Pero, al igual que en el térmico, los valores son mayores que los resultados obtenidos en tensión plana y se explica por la misma causa, la condición de deformación plana impide la deformación axial generada por la hidratación.

Figura 3.10: Desplazamiento y tensiones residuales en deformación plana para $\Delta c = 0.5\%$.

De este ejemplo se concluye, igual que en el térmico, que el cálculo en condiciones de deformación plana tampoco es válido para determinar las tensiones residuales por hidratación.

3.2.4. Combinación de tensiones residuales

Las dos tensiones, térmicas y de hidratación, se superponen creando una tensión residual única. Pero no aparecen en el mismo momento, las térmicas existen desde el inicio y las de hidratación se añaden progresivamente. Las tensiones residuales llegan al estado permanente cuando la hidratación se ha completado y su valor se obtiene sumando de los resultados anteriores.

Tal como se ha comentado, ambas son similares pero de efecto contrario. Al inicio, después de la fabricación, las tensiones residuales son sólo térmicas y se suman a las centrífugas disminuyendo la resistencia del rotor. Con el tiempo la hidratación genera gradualmente tensiones que contrarrestan el efecto negativo de las térmicas. Al finalizar el proceso de hidratación sus tensiones superan las térmicas de forma que las tensiones residuales finales son favorables para la resistencia del rotor.

Para comprobar el estado final de las tensiones residuales en el rotor se aplica al ejemplo de los apartados anteriores, 3.2.2 y 3.2.3. En la figura 3.11 se representan los gráficos finales y se observa que las tensiones son del mismo signo que las de hidratación de la
Figura 3.11: Desplazamiento radial y tensiones residuales térmicas y por hidratación.

figura 3.9 aunque sus valores son menores y, por lo tanto, las tensiones generadas por hidratación son mayores que las térmicas.

La influencia de las tensiones residuales sobre las totales del rotor es perjudicial durante la primera etapa de la vida del rotor, pero disminuye con el tiempo y al final, cuando se ha completado el proceso de hidratación, llega a ser favorable.
Capítulo 4

MEJORA DE LOS SISTEMAS DE TENSIONES

En los dos capítulos anteriores se han utilizado dos sistemas convencionales para el cálculo de tensiones: las condiciones de tensión plana (TP) y de deformación plana (DP). Cada uno de ellos tiene su campo de aplicación con sus ventajas y sus limitaciones. Pocas veces en las publicaciones sobre cálculo de rotores se plantea estudiar a fondo estas limitaciones, simplemente se toman como premisas iniciales.

En la bibliografía el cálculo de rotores en condiciones de TP es prácticamente universal, a pesar de despreciar las tensiones en dirección axial \(z \). En cambio, las condiciones DP no se utilizan prácticamente nunca y las pocas veces que aparece está modificado para apartarse de la deformación plana pura, como por ejemplo en Genta (1985) [19] o en Ha y otros (2001) [22]. El cálculo en DP presenta algunas limitaciones que lo hacen poco aconsejable para el cálculo de rotores, pero su enfoque es de gran utilidad para estudiar el sistema general de tensiones.

En este capítulo se analizan en primer lugar las deficiencias del cálculo en deformación plana y se propone un sistema modificado que resuelve las limitaciones para su aplicación al cálculo de rotores. Posteriormente, se desarrolla un sistema general de cálculo que unifica los sistemas y permite aproximarse a un sistema universal donde se tiene en cuenta la posición axial \(z \) del punto estudiado.

4.1. Estado de deformación plana modificada

4.1.1. Limitaciones del cálculo en deformación plana

El cálculo bajo condiciones de deformación plana puede considerarse como un sistema complementario del cálculo en tensión plana. Con él se pretende simular el comportamiento de rotores de longitud axial grande, mientras que la tensión plana simula los rotores de longitud corta.
El modelo de tensión plana considera que sólo existen tensiones en dos direcciones, por ejemplo para el caso de los rotores en \(r \) y \(\theta \), y en la tercera, \(z \), es nula. Esta condición se cumple en los elementos mecánicos que están libres en la tercera dirección y tienen una longitud pequeña en esta dirección. También se cumple elementos de longitud en \(z \) grande pero, además de tener los extremos libres, debe tener las otras dos tensiones, en \(r \) y \(\theta \), uniformes. El hecho de tener los extremos libres supone que la fuerza total en \(z \) es cero y, por lo tanto, la tensión media en \(z \) es nula, pero no implica que no exista ninguna tensión local. Éstas son totalmente nulas sólo si las deformaciones en \(z \) creadas por el efecto Poisson son totalmente uniformes, de manera que no se generan tensiones \(\sigma_z \) locales debido a la diferencia de desplazamiento en \(z \) entre dos puntos.

El rotor es un elemento con extremos axiales libres pero las tensiones en las otras dos direcciones, tangencial y radial, no son uniformes. Luego la condición de TP se cumple únicamente cuando la longitud \(z \) del rotor es pequeña.

Por otra parte, el modelo de deformación plana considera nula la deformación en la tercera dirección \(\varepsilon_z \). Se cumple en elementos mecánicos rígidamente fijados en ambos extremos de manera que no permita ningún desplazamiento exterior en \(z \). También se cumple parcialmente en elementos mecánicos, que a pesar de estar libres en los extremos, tengan una longitud grande y el valor medio de las tensiones en las otras dos direcciones sea cero.

Para describir este último caso se muestra el elemento (a) de la figura 4.1 que está libre en los extremos \(z \) y sometido a tensiones en la dirección \(\theta \). La tensión \(\sigma_\theta \) es simétrica en \(r \), y por efecto Poisson tiende a generar una deformación \(\varepsilon_z \) también simétrica, como se muestra en las secciones próximas al extremo. En las secciones alejadas de los extremos los desplazamientos en \(z \) negativos y positivos se compensan entre sí y la deformación en todos los puntos tiende al valor medio, o sea a cero. Un ejemplo de este caso es un elemento sometido a momento flector puro, que tendría una tensión como en la figura 4.1(a).

![Figura 4.1: Desplazamientos axiales de las deformaciones \(\varepsilon_z \) según las tensiones \(\sigma \) en la cara superior.](image)

En el caso (b) el valor medio de la tensión \(\sigma_\theta \) no es nulo y las deformaciones \(\varepsilon_z \) generadas por efecto Poisson tampoco tienen un valor medio nulo, como se ve en las secciones del
4.1. ESTADO DE DEFORMACIÓN PLANA MODIFICADA

extremo. En secciones alejadas, donde el desplazamiento se uniformiza, la deformación en todos los puntos tiende al valor medio, que es distinto de cero. En este caso no se cumple la condición de deformación plana.

El rotor es uno de estos casos, con extremos en z libres y con tensiones en las otras dos direcciones no simétricas. La tensión tangencial de origen centrífugo es positiva en todos los puntos, con una distribución semejante a \(\sigma_\theta \) de la figura 4.1(b), y la tensión radial es también siempre positiva con un máximo en el centro. Por lo tanto, las secciones alejadas del extremo de un rotor no cumplen la condición de deformación plana porque su deformación axial media no es nula (\(\varepsilon_z \neq 0 \)).

A pesar de que el método de deformación plana no es válido para el cálculo del rotor cargado con fuerzas centrífugas, los resultados para las tensiones tangencial y radial son correctos, como se muestra en la figura 2.14. Pero los resultados de la tensión axial son erróneos, tal como se observa en la figura 2.11 en donde los valores de \(\sigma_z \) son siempre positivos y la fuerza axial no es cero, lo que contradice la condición de extremos libres.

Si las condiciones de deformación plana se aplican al cálculo de las tensiones residuales los resultados son claramente erróneos, como se ha comentado en los apartados 3.1.9 y 3.2.3. En los ejemplos presentados los resultados de las ecuaciones analíticas coinciden con los del modelo en deformación plana en MEF, con lo que se comprueba que las ecuaciones son correctas y el error es debido al modelo.

A pesar de las deficiencias descritas este modelo es la única herramienta para afrontar el estudio analítico de las secciones alejadas del extremo. Para ello, en este capítulo se presenta una modificación de las condiciones de la deformación plana que determina las tensiones en las secciones alejadas. También se obtiene un modelo aproximado para calcular la zona de transición entre estas secciones y las del extremo.

4.1.2. Deformación axial constante (DAC)

Como se ha visto en los capítulos anteriores para cumplir la condición de deformación axial nula es necesario generar cargas axiales fícticas que contrarresten las deformaciones axiales creadas por el efecto Poisson de la tensión tangencial y radial. Esto contradice la condición del rotor de tener los extremos libres.

Este problema se soluciona introduciendo una deformación axial \(\varepsilon_z \) en los datos iniciales y se mantiene el resto del proceso en las mismas condiciones. Esta deformación es coherente con las condiciones de contorno porque los extremos del rotor están libres sin ninguna restricción en el desplazamiento axial.

Pocos autores afrontan dicho problema. Sung Kyu Ha en el artículo del 2001[22] introduce una deformación axial en el cálculo de rotores. Considera que su valor es una función lineal del radio y es igual para todas las secciones del rotor. Al final de este capítulo, en el apartado 4.2.8, se analiza con más detalle esta propuesta.

Aquí se pretende, en un primer paso, simular solamente las secciones situadas lejos del extremo axial. Parece evidente que en el rotor debe sufrir cierta deformación axial, pero
no es inmediato saber si varía o no con el radio. A continuación se demuestra que es uniforme para los puntos alejados del extremo libre.

Se supone que el rotor tiene simetría axial y es uniforme en z, tanto en la geometría como en las cargas. Esto supone que las tensiones tangenciales y radiales y las deformaciones axiales generadas por efecto Poisson tienen también simetría axial. En puntos alejados del extremo estas deformaciones no pueden variar con el radio porque las secciones transversales al eje deben ser planas, en caso contrario el cilindro tendría que adoptar una forma de tonel, lo cual es imposible en las secciones lejanas del extremo. A su vez, tampoco pueden variar con z porque supondría que también varían las tensiones que las generan y contradice la uniformidad en las cargas. Luego, en las secciones alejadas del extremo la deformación debe ser necesariamente uniforme.

El sistema de cálculo por deformación plana se puede rehacer sustituyendo el valor cero de la deformación axial por un valor constante. A este valor se denomina deformación axial uniforme, ε^u_z, y al nuevo modelo de cálculo se le llama deformación axial constante (DAC).

El valor de la deformación, ε^u_z, se determina mediante la condición de fuerza axial nula porque los extremos del rotor están libres. Al final del capítulo, en el apartado 4.2.9, se justifica que no es necesaria una segunda condición sobre momentos de fuerzas como utiliza Ha y otros (2001) [22].

A continuación se desarrolla el cálculo del desplazamiento radial y las tensiones de las zonas del rotor alejadas del extremo mediante una deformación axial constante. El cálculo de las tensiones centrífugas se presenta por separado del cálculo de las residuales para mantener una semejanza con los capítulos anteriores. En la sección 4.2 se extrapolan estos resultados a los puntos más próximos al extremo para completar el cálculo del rotor.

4.1.3. Método DAC aplicado a las tensiones centrífugas

El cálculo en deformación axial constante se realiza siguiendo el mismo proceso que en deformación plana, descrito en el apartado 2.2.8, pero suponiendo que la deformación axial es un valor distinto de cero.

A partir de la ecuación constitutiva 2.6 se deduce el valor de ε_z pero no se iguala a cero, como se ha hecho en la ecuación 2.44, sino que se asigna un valor constante ε^u_z. Al final del proceso, en el apartado 4.1.4, se determina el valor adecuado de ε^u_z.

\[
\varepsilon^u_z = -\frac{\nu_\theta}{E_\theta} \sigma_\theta + \frac{\nu_r}{E_r} \sigma_r + \frac{1}{E_z} \sigma_z
\]

(4.1)

y la tensión axial es

\[
\sigma_z = E_z \left(\frac{\nu_\theta}{E_\theta} \sigma_\theta + \frac{\nu_r}{E_r} \sigma_r + \varepsilon^u_z \right)
\]

(4.2)

Sustituida en el propio sistema 2.6 se obtienen las deformaciones en función de las otras
dos tensiones y de un nuevo término con ε_z^u

\[
\begin{align*}
\varepsilon_\theta &= \frac{1 - \nu_{\theta z} \nu_{z \theta}}{E_\theta} \sigma_\theta - \left(\frac{\nu_{\theta r} + \nu_{\theta z} \nu_{z r}}{E_r} \right) \sigma_r - \nu_{\theta z} \varepsilon_z^u \\
\varepsilon_r &= - \left(\frac{\nu_{r \theta} + \nu_{r z} \nu_{z \theta}}{E_\theta} \right) \sigma_\theta + \frac{1 - \nu_{r z} \nu_{z r}}{E_r} \sigma_r - \nu_{r z} \varepsilon_z^u
\end{align*}
\] (4.3)

Se reescriben, como la ecuación 2.50, en la forma

\[
\begin{align*}
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r
\end{bmatrix} &=
\begin{bmatrix}
s & -q \\
-q & p
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r
\end{bmatrix} +
\begin{bmatrix}
-\nu_{\theta z} \\
-\nu_{r z}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_z^u
\end{bmatrix} \\
\end{align*}
\] (4.4)

de donde se deducen las tensiones

\[
\begin{align*}
\sigma_\theta &= \frac{p}{ps-q^2} \left[\frac{u}{r} + \frac{q}{p} u_r + \left(\nu_{\theta z} + \frac{q}{p} \nu_{r z} \right) \varepsilon_z^u \right] \\
\sigma_r &= \frac{s}{ps-q^2} \left[\frac{q}{s} \frac{u}{r} + u_r + \left(\frac{q}{s} \nu_{\theta r} + \nu_{r z} \right) \varepsilon_z^u \right]
\end{align*}
\] (4.5)

Derivando la ecuación σ_r

\[
\sigma_{r,r} = \frac{s}{ps-q^2} \left(\frac{q}{s} \frac{u_r}{r} - \frac{q}{s} \frac{u_r}{r^2} + u_{rr} \right)
\]

y aplicando las tres ecuaciones a la de equilibrio, ecuación 2.4, se obtiene un desplazamiento igual a la ecuación 2.53 pero con un nuevo sumando en función de $\frac{1}{r}$

\[
u_{r r} + \frac{1}{r} u_r - \frac{a^2}{r^2} u = b r + d \frac{1}{r}
\] (4.6)

en la cual el parámetro d contiene algunas propiedades del material y la deformación axial ε_z^u

\[
d = - \left[\left(\frac{q}{s} - a^2 \right) \nu_{\theta z} + \left(1 - \frac{q}{s} \right) \nu_{r z} \right] \varepsilon_z^u
\] (4.7)

El desplazamiento radial se obtiene de la ecuación 4.6 siguiendo el mismo proceso del apartado 2.2.4, pero teniendo en cuenta el nuevo sumando en r^{-1}. En la ecuación intermedia 2.16 la función $f(r)$ tiene ahora dos sumandos que se resuelven en dos procesos de integración paralelos. El sumando que contiene el parámetro b está resuelto en el propio apartado 2.2.4 y el que contiene el d lo está en el apartado 3.2.4. La solución final para el desplazamiento radial es la suma de los dos

\[
u(r) = \frac{1}{r^6} A + r^a B + \frac{b}{9-a^2} r^3 + \frac{d}{1-a^2} r
\] (4.8)
en donde la deformación axial \(\varepsilon_z^u \) está incluido en el parámetro \(d \) según la expresión 4.7

La tensión tangencial y la radial se deducen sustituyendo el desplazamiento en las ecuaciones 4.5

\[
\sigma_\theta(r) = a^2 c_r \left[\left(1 - \frac{a}{q} \right) \frac{1}{r^{a+1}} A + \left(1 + \frac{a}{q} \right) r^{a-1} B \right] + \frac{1 + 3 \frac{p}{9 - a^2} b r^2}{\frac{1 - \frac{q^2}{p s}}{1 - a^2} (\nu_{\theta r} - \nu_{r z}) \varepsilon_z^u} \right]
\]

\[
\sigma_r(r) = c_r \left[\left(\frac{q}{s} - a \right) \frac{1}{r^{a+1}} A + \left(\frac{q}{s} + a \right) r^{a-1} B \right] + \frac{\frac{q}{9 - a^2} b r^2 + \frac{a^2 - \frac{q^2}{p s}}{1 - \frac{q^2}{s^2}} (\nu_{\theta r} - \nu_{r z}) \varepsilon_z^u} \right]
\]

y la tensión \(\sigma_z(r) \) se calcula a partir de éstas y la ecuación 4.2, simplificada con las relaciones 2.8

\[
\sigma_z(r) = \nu_{\theta z} \sigma_\theta + \nu_{r z} \sigma_r + E_z \varepsilon_z^u \tag{4.10}
\]

Esta solución no es válida en los valores \(a = 3 \) y \(a = 1 \). Para el valor \(a = 3 \) coincide con el punto singular de la solución de las fuerza centrífuga, estudiado en el apartado 2.2.6, y a la solución particular de las ecuaciones 2.60 hay que añadir el término en \(d \) de la ecuación 4.8 y el término en \(\varepsilon_z^u \) de las ecuaciones 4.9.

\[
u(r) = \frac{1}{r^3} A + \frac{1}{r^3} B - \frac{b}{36} r^3 + \frac{b}{6} r^3 \ln r - \frac{d}{8} r
\]

\[
\sigma_\theta(r) = a^2 c_r \left[\left(1 - \frac{3 q}{p} \right) \frac{1}{r^4} A + \left(1 + \frac{4 q}{p} \right) r^2 B \right] + \left(1 - \frac{3 q}{p} \right) \frac{b}{36} r^2 + \left(1 + \frac{3 q}{p} \right) \frac{b}{6} r^2 \ln r - \frac{1}{8} \left(\nu_{\theta r} - \nu_{r z} \varepsilon_z^u \right) \right]
\]

\[
\sigma_r(r) = c_r \left[\left(\frac{q}{s} - 3 \right) \frac{1}{r^4} A + \left(\frac{q}{s} + 3 \right) r^2 B \right] + \left(-\frac{q}{s} + 3 \right) \frac{b}{36} r^2 + \left(-\frac{q}{s} + 3 \right) \frac{b}{6} r^2 \ln r - \frac{a^2 - \frac{q^2}{s^2}}{8} \left(\nu_{\theta r} - \nu_{r z} \varepsilon_z^u \right) \right]
\]

\[
(4.11)
\]
4.1. ESTADO DE DEFORMACIÓN PLANA MODIFICADA

Para el valor $a = 1$, también está estudiado dentro de las tensiones residuales, en el apartado 3.1.6. La expresión del desplazamiento coincide con la ecuación 3.20 y las tensiones con las ecuaciones 3.33 pero cambiando el parámetro e por el parámetro d y el ΔT por ε^u_z, y añadiendo los términos en b de las ecuaciones 4.8 y 4.9.

\[
\begin{align*}
\sigma_\theta(r) &= c_r \left[\left(1 - \frac{q}{p} \right) \frac{1}{r^2} A + \left(1 + \frac{q}{p} \right) B \right] \\
&\quad + \frac{1 + \frac{3q}{p}}{8} b r^2 - \frac{d}{4} \left(1 - \frac{q}{p} \right) + \frac{d}{2} \left(1 + \frac{q}{p} \right) \ln r + \left(\nu_{\theta z} + \frac{q}{p} \nu_{rz} \right) \varepsilon^u_z \\
\sigma_r(r) &= c_r \left[\left(\frac{q}{s} - 1 \right) \frac{1}{r^2} A + \left(\frac{q}{s} + 1 \right) B \right] \\
&\quad + \frac{q + 3}{8} b r^2 - \frac{d}{4} \left(\frac{q}{s} - 1 \right) + \frac{d}{2} \left(\frac{q}{s} + 1 \right) \ln r + \left(\frac{q}{s} \nu_{\theta z} + \nu_{rz} \right) \varepsilon^u_z
\end{align*}
\] (4.12)

4.1.4. Condición de fuerza axial nula

Todos los resultados anteriores dependen de la deformación axial ε^u_z que se ha asignado en la ecuación 4.1, pero su valor es inicialmente desconocido. Se determina mediante la condición de extremos libres, o sea, fuerza axial nula.

La fuerza axial se calcula sumando la tensión σ_z en la superficie frontal del cilindro, desde el radio interior r_i hasta el exterior r_e. Luego la condición queda

\[
F_z = \int_{r_i}^{r_e} \sigma_z 2\pi r \, dr = 0
\] (4.13)

El valor de ε^u_z se puede determinar aplicando esta condición de dos maneras: sustituyendo directamente la expresión de $\sigma_z(r)$ dada por la ecuación 4.10 que incluye las tensiones $\sigma_\theta(r)$ y $\sigma_r(r)$, o mediante un cálculo iterativo. El primero da lugar a un sistema analítico de resolución compleja, y más si el volante es multicapa con diversos materiales.

La resolución mediante el proceso iterativo es muy simple pero requiere repetir el cálculo varias veces. Se elige un valor inicial de ε^u_z y se calcula la tensión σ_z y su fuerza F_z, si el valor no es cero se repite con un nuevo valor de ε^u_z. Para que el proceso converja rápidamente el nuevo valor se obtiene restando del valor ε^u_z de cálculo la deformación axial media generada por la fuerza F_z. El sistema es bastante lineal y en pocas iteraciones se consigue un valor de la fuerza casi nulo.
La deformación axial media ε_z^u creada por F_z para un rotor multicapa genérico se puede determinar sustituyendo la fuerza axial por la integral de la ecuación 4.13

$$F_z = \int_{r_i}^{r_e} E_z \varepsilon_z^u r \, dr \quad \Rightarrow \quad \varepsilon_z^u = \frac{\int_{r_i}^{r_e} \sigma_z r \, dr}{\int_{r_i}^{r_e} E_z r \, dr} \quad (4.14)$$

Para automatizar el proceso se asigna un valor inicial $\varepsilon_z^u = 0$, que corresponde al estado deformación plana, y da lugar a una fuerza axial máxima pero se reduce rápidamente en pocas iteraciones. En la práctica se comprueba que en cada iteración se divide por diez, de manera que son suficientes dos o tres iteraciones para que la fuerza axial no influya en las tensiones, ni en la resistencia final del rotor.

4.1.5. Ejemplo del DAC aplicado a las tensiones centrífugas

Para comprobar los resultados del DAC se aplica al ejemplo utilizado en la deformación plana del apartado 2.2.9, con los mismos datos en el rotor y en las cargas. Después de varias iteraciones se obtiene una deformación axial de $\varepsilon_z^u = -3,54 \cdot 10^{-3}$ m/m y una fuerza axial inferior a 1N. Los resultados del desplazamiento y tensiones se presentan en las figuras 4.2 y 4.3.

![Figura 4.2: Desplazamientos radiales y tensiones centrifugas en DAC](image)

En las figuras 4.2 y 4.3 se observa que el desplazamiento radial, la tensión tangencial y la radial son muy parecidas respecto del cálculo en DP de la figura 2.11, en cambio la tensión axial sufre un cambio sustancial. El desplazamiento tiene una pendiente prácticamente constante, la tensión tangencial tiene también una pendiente más suave y el valor máximo de la radial disminuye ligeramente. La tensión axial se reduce mucho, el valor máximo en la zona central varía de 38 a 7 MPa y en las laterales es negativo para que la fuerza axial sea cero.
4.1. ESTADO DE DEFORMACIÓN PLANA MODIFICADA

Figura 4.3: Tensión axial centrífuga en DAC

Para valorar estos resultados del DAC se comparan con los obtenidos en un modelo de elementos finitos, igual que en el apartado 2.2.9 para los resultados del DP. Para ello se crea un modelo con las mismas condiciones que la figura 2.8 del apartado 2.2.7 para aplicarlo a TP, pero con una longitud axial mucho mayor, $l = 1$ m. En la figura 4.4 se presentan los resultados sobre un radio situado sobre el eje de simetría, $z = 0,5$ m, y se comparan con las gráficas anteriores de las figuras 4.2 y 4.3.

Figura 4.4: Comparación de las tensiones obtenidas en DAC con los resultados de MEF.

En los gráficos de la figura 4.4 se observa que la coincidencia de los resultados de las ecuaciones de DAC y los obtenidos en MEF es perfecta. Tanto en la tensión tangencial como en la radial aparece una desviación insignificante.
Es importante resaltar que los resultados del desplazamiento y de las tensiones, tangencial y radial, son prácticamente iguales que en TP. Por lo tanto, se concluye que los resultados obtenidos por ambos sistemas son similares, solamente difieren en la tensión y la deformación axiales. Esta diferencia es lógica porque las condiciones de cálculo son distintas.

4.1.6. Consideraciones para fibras axiales

En el caso de fibras colocadas en dirección axial el cálculo en condiciones de deformación axial constante se simplifica. Se aplican las consideraciones sobre los materiales expuestas en el apartado 2.2.10 a las ecuaciones de deformación plana del apartado 2.2.9 modificadas mediante la deformación axial constante.

En la ecuación 4.4 los parámetros \(p \) y \(s \) adoptan la forma de la ecuación 2.64 y el \(q \) es el término general de la ecuación 2.48. De ella se obtiene también la ecuación de desplazamiento 4.6, pero simplificada. El parámetro del material es \(a = 1 \), como en 2.2.10 y el parámetro de deformación de la ecuación 4.7 es ahora \(d = 0 \), porque \(\nu_{\theta z} = \nu_{rz} \) según las ecuaciones 2.61.

La ecuación diferencial del desplazamiento con estas simplificaciones queda reducida a

\[
 u_{rr} + \frac{1}{r} u_r - \frac{1}{r^2} u = b \ r
\]

y su solución es un caso particular de la ecuación 4.8

\[
 u(r) = \frac{1}{r} A + r \ B + \frac{b}{8} \ r^3
\]

(4.15)

Sustituyendo ésta y su derivada en las ecuaciones 4.5 se obtienen las tensiones

\[
 \sigma_\theta(r) = c_r \left(1 - \frac{q}{p} \right) \frac{1}{r^2} A + \left(1 + \frac{q}{p} \right) r B + \left(1 + 3 \frac{q}{p} \right) \frac{b}{8} \ r^2 + \left(1 + \frac{q}{p} \right) \nu_{\theta z} \varepsilon_z^u
\]

\[
 \sigma_r(r) = c_r \left(\frac{q}{s} - 1 \right) \frac{1}{r^2} A + \left(\frac{q}{s} + 1 \right) r B + \left(\frac{q}{s} + 3 \right) \frac{b}{8} \ r^2 + \left(\frac{q}{s} + 1 \right) \nu_{\theta z} \varepsilon_z^u
\]

(4.16)

en donde los cocientes entre parámetros se pueden poner en función directa de las propiedades del material

\[
 \frac{q}{p} = \frac{\nu_{r \theta} + \nu_{\theta z} \nu_{z \theta}}{1 - \nu_{\theta z} \nu_{z \theta}} ; \quad \frac{q}{s} = \frac{\nu_{r \theta} + \nu_{\theta z} \nu_{z \theta}}{1 - \nu_{\theta z} \nu_{z \theta}}
\]

La tensión axial de la ecuación 4.2 se simplifica aplicando las propiedades de la fibra axial de las ecuaciones 2.8 y las relaciones debido a la fibra axial.
4.1. ESTADO DE DEFORMACIÓN PLANA MODIFICADA

\[
\sigma_z(r) = \nu_{\theta z}(\sigma_\theta + \sigma_r) + E_z \varepsilon^u_z \quad (4.17)
\]

4.1.7. Método DAC aplicado a las tensiones residuales térmicas

Para el cálculo de tensiones térmicas en condiciones de DAC el proceso es el mismo que en DP del apartado 3.1.8 pero añadiendo los términos de la deformación axial \(\varepsilon^u_u \) como se ha hecho en el apartado 4.1.3. Las definiciones de los parámetros \(c \) y \(d \), en las ecuaciones 3.28 y 4.16, son válidas. Los parámetros intermedios \(p \), \(q \) y \(s \) de la ecuación 2.48 y el parámetro \(a \) de la ecuación 2.53 también se conservan.

Dado que el proceso de cálculo es el mismo el resultado del desplazamiento y las tensiones se obtienen fácilmente sumando los dos efectos en un único término

\[
u(r) = \frac{1}{r^a} A + r^a B + \frac{e + d}{1 - a^2} r
\]

\[
\sigma_\theta(r) = a^2 c_r \left[\left(1 - \frac{q}{p} \right) \frac{1}{r^{a+1}} A + \left(1 + \frac{a}{q} \frac{q}{s} \right) r^{a-1} B \right]
+ \left(\frac{q^2}{ps} - 1 \right) \left[\alpha_\theta - \alpha_r + (\nu_{\theta z} - \nu_{rz}) \alpha_z \right] \frac{\Delta T}{1 - a^2} + \frac{1}{1 - a^2} \left(\nu_{\theta z} - \nu_{rz} \right) \varepsilon^u_z
\]

\[
\sigma_r(r) = c_r \left[\left(\frac{q}{s} - a \right) \frac{1}{r^{a+1}} A + \left(\frac{q}{s} + a \right) r^{a-1} B \right]
+ \left(\frac{q^2}{s^2} + a^2 \right) \left[\alpha_\theta - \alpha_r + (\nu_{\theta z} - \nu_{rz}) \alpha_z \right] \frac{\Delta T}{1 - a^2} + \frac{a^2 - \frac{q^2}{s^2}}{1 - a^2} \left(\nu_{\theta z} - \nu_{rz} \right) \varepsilon^u_z
\]

La ecuación de la tensión \(\sigma_z \) se deduce a partir de las ecuaciones 3.24 y 4.17.

\[
\sigma_z(r) = \nu_{\theta z} \sigma_\theta + \nu_{rz} \sigma_r - E_z \alpha_z \Delta T + E_z \varepsilon^u_z \quad (4.20)
\]

Estas ecuaciones tienen el punto singular en \(a = 1 \) y la solución particular se obtiene con el mismo proceso que en tensión plana a partir de la ecuación 3.18. El desplazamiento y las tensiones, tangencial y radial, son
CAPÍTULO 4. MEJORA DE LOS SISTEMAS DE TENSIONES

\[u(r) = \frac{1}{r} A + r B - \frac{e + d}{4} r + \frac{e + d}{2} r \ln r \]

\[\sigma_\theta(r) = c_r \left[\left(1 - \frac{q}{p} \right) \frac{1}{r^2} A + \left(1 + \frac{q}{p} \right) B + \frac{e + d}{2} \left(1 + \frac{q}{p} \right) \ln r + \frac{e + d}{4} \left(-1 + \frac{q}{p} \right) \right]
- \left(\alpha_\theta + \frac{q}{p} \alpha_r + \left(\nu_{\theta z} + \frac{q}{p} \nu_{rz} \right) \alpha_z \right) \Delta T + \left(\nu_{\theta z} + \frac{q}{p} \nu_{rz} \right) \varepsilon^u_z \]

\[\sigma_r(r) = c_r \left[\left(\frac{q}{p} - 1 \right) \frac{1}{r^2} A + \left(\frac{q}{p} + 1 \right) B + \frac{e + d}{2} \left(\frac{q}{p} + 1 \right) \ln r + \frac{e + d}{4} \left(-\frac{q}{p} + 1 \right) \right]
- \left(\frac{q}{p} \alpha_\theta + \alpha_r + \left(\frac{q}{p} \nu_{\theta z} + \nu_{rz} \right) \alpha_z \right) \Delta T + \left(\frac{q}{s} \nu_{\theta z} + \nu_{rz} \right) \varepsilon^u_z \]

\[(4.21) \]

Si se aplica el sistema DAC al cilindro simple del ejemplo del apartado 3.1.9 se obtienen los gráficos de desplazamiento y tensiones de las figuras 4.5 y 4.6.

![Figura 4.5: Desplazamiento y tensiones, tangencial y radial, térmicas en DAC](image)

Los resultados de las figuras 4.5 y 4.6 son similares a los resultados en TP del apartado 3.1.5, en cambio son muy distintos de los resultados en DP de la figura 3.5. La tangencial y la radial se reducen casi a la mitad, debido al efecto de la dilatación axial descrito en el apartado 3.1.9. En la tensión axial la diferencia es aún mayor, porque al efecto anterior se suma la deformación axial \(\varepsilon^u_z \).

Con este ejemplo se comprueba que el cálculo en condiciones de DP es no es válido para hallar las tensiones térmicas del rotor, tal como se ha expuesto en el apartado 3.1.9. En cambio, el cálculo en condiciones DAC y en TP son totalmente correctos.
4.1. ESTADO DE DEFORMACIÓN PLANA MODIFICADA

4.1.8. Método DAC aplicado a las tensiones residuales por hidratación

Para el cálculo de las tensiones residuales por hidratación en condiciones DAC se sigue el proceso de DP del apartado 3.2.3 pero añadiendo los términos de la deformación axial ε_z^u del apartado 4.1.3. La definición del parámetro g de la ecuación 3.48 sigue siendo válida.

El desplazamiento y las tensiones se obtienen fácilmente uniendo las respectivas ecuaciones de ambos apartados

$$ u(r) = \frac{1}{r^a} A + r^a B + \frac{g + d}{1 - a^2} r $$

$$ \sigma_\theta(r) = a^2 c_r \left\{ \left(1 - a \frac{q}{p} \right) \frac{1}{r^{a+1}} A + \left(1 + a \frac{q}{s} \right) r^{a-1} B \right. $$

$$ + \left(\frac{q^2}{p s} - 1 \right) \left[\beta_\theta - \beta_r + (\nu_{\theta z} - \nu_{rz})\beta_z \right] \frac{\Delta c}{1 - a^2} + \left. \frac{1 - \frac{q^2}{p^2}}{1 - a^2} (\nu_{\theta r} - \nu_{rz}) \varepsilon_z^u \right\} $$

$$ \sigma_r(r) = c_r \left\{ \left(\frac{q}{s} - a \right) \frac{1}{r^{a+1}} A + \left(\frac{q}{s} + a \right) r^{a-1} B \right. $$

$$ + \left. \frac{q^2}{s^2} - a^2 \left[\beta_\theta - \beta_r + (\nu_{\theta z} - \nu_{rz})\beta_z \right] \frac{\Delta c}{1 - a^2} + \frac{a^2 - \frac{q^2}{s^2}}{1 - a^2} (\nu_{\theta r} - \nu_{rz}) \varepsilon_z^u \right\} (4.22) $$

Para determinar la tensión σ_z se aplican las ecuaciones 3.50 y 4.18
\[
\sigma_z(r) = \nu_{\theta z} \sigma_{\theta} + \nu_{rz} \sigma_r - E_z \beta_z \Delta c + E_z \varepsilon^u_z
\] (4.23)

El punto singular no varia, \(a = 1\), y su solución particular se deduce del apartado anterior cambiando los parámetros térmicos por los de humedad.

\[
u(r) = \frac{1}{r} A + r B - \frac{g + d}{4} r + \frac{g + d}{2} r \ln r
\]

\[
\sigma_{\theta}(r) = c_r \left[\left(1 - \frac{q}{p} \right) \frac{1}{r^2} A + \left(1 + \frac{q}{p} \right) B + \frac{g + d}{2} \left(1 + \frac{q}{p} \right) \ln r + \frac{g + d}{4} \left(-1 + \frac{q}{p} \right) \right]
\]

\[
- \left(\beta_{\theta} + \frac{q}{p} \beta_r + \left(\nu_{\theta z} + \frac{q}{p} \nu_{rz} \right) \beta_z \right) \Delta T + \left(\nu_{\theta z} + \frac{q}{p} \nu_{rz} \right) \varepsilon^u_z
\]

\[
\sigma_r(r) = c_r \left[\left(\frac{q}{p} - 1 \right) \frac{1}{r^2} A + \left(\frac{q}{p} + 1 \right) B + \frac{g + d}{2} \left(\frac{q}{p} + 1 \right) \ln r + \frac{g + d}{4} \left(-\frac{q}{p} + 1 \right) \right]
\]

\[
- \left(\frac{q}{p} \beta_{\theta} + \beta_r + \left(\frac{q}{p} \nu_{\theta z} + \nu_{rz} \right) \beta_z \right) \Delta T + \left(\frac{q}{s} \nu_{\theta z} + \nu_{rz} \right) \varepsilon^u_z
\] (4.24)

Aplicando el sistema DAC al ejemplo de cilindro simple del apartado 3.2.3 se obtiene el desplazamiento y las tensiones de las figuras 4.7 y 4.8.

Figura 4.7: Desplazamiento y tensiones, tangencial y radial, en DAC para \(\Delta c = 0.5\%\)

Estos resultados, igual que en el térmico, son muy parecidos a los obtenidos en TP del apartado 3.2.2. Si se comparan con los gráficos en DP del apartado 3.2.3 se observa que las tensiones, tangencial, radial y axial, son muy distintas, los valores disminuyen...
considerablemente. Se concluye, igual que en el apartado anterior, que los cálculos en DP no son útiles para las tensiones de hidratación del rotor, en cambio, en TP y en DAC son correctos y casi equivalentes a excepción de la tensión axial.

4.2. Modelo unificado

4.2.1. Unificación de modelos

En el análisis de las tensiones del rotor expuesto en los capítulos 2 y 3 se ha desarrollado bajo las condiciones clásicas, estado de tensión plana (TP) y deformación plana (DP), y en este capítulo 4 se ha modificado a deformación axial constante (DAC). A continuación se presenta un modelo unificado para el cálculo de rotores que permite aplicar las condiciones TP y DAC en un sistema único de ecuaciones. También se desarrolla, dentro de los límites de un modelo analítico simple, un método para calcular cualquier estado intermedio entre estas dos condiciones límite.

En todos los cálculos anteriores se ha hallado el desplazamiento radial y las tensiones en función del radio \(r \) sin tener en cuenta la posición axial \(z \). Con el nuevo sistema unificado los resultados se determinan en función de ambos parámetros y las ecuaciones son tipo \(\sigma(r, z) \) y \(\varepsilon(r, z) \), en donde \(z \) es la distancia al extremo libre del rotor, como se muestra en la figura 4.9.

Para facilitar la exposición y simplificar la formulación matemática, el análisis de este nuevo sistema se realiza de momento sobre las tensiones de la fuerza centrífuga. Más adelante, en el capítulo 6 dedicado a la formulación general, las leyes que aquí se deducen se aplican a todas las cargas, incluidas las térmicas y de hidratación. Esto permite centrarse en el estudio de la influencia de la posición axial sobre las tensiones, prescindiendo del tipo de carga.
4.2.2. Zonas axiales

Como es lógico los extremos libres del rotor influyen sobre el estado de tensiones y deformaciones, de manera que sus valores son función, además del radio \(r \), de la posición axial \(z \). Esta influencia decrece con la distancia al extremo y en los puntos muy alejados pueden considerarse que es nula.

Para estudiar esta influencia en el caso de un rotor de gran longitud se distinguen tres tipos de puntos o zonas según su posición axial: los puntos situados a poca distancia del extremo libre, los situados a gran distancia del extremo y los intermedios o zona de transición entre las dos. En la figura 4.9 se muestran estas zonas sobre una sección longitudinal del rotor, en donde la distancia axial \(l \) se divide en una zona central, alejada de los extremos, y dos laterales en cada uno de los extremos.

![Figura 4.9: Zonas de cálculo diferenciadas por su posición \(z \) respecto a los extremos.](image)

La zona del extremo se caracteriza por tener la tensión \(\sigma_z \) nula o prácticamente nula, como consecuencia de la proximidad al borde libre. La zona alejada, sin influencia del extremo, tiene las tensiones y deformaciones uniformes en \(z \), y sólo varían con \(r \). Finalmente la zona de transición es simplemente una región intermedia entre ambas, en la cual, las tensiones y deformaciones son función de \(r \) y de \(z \) simultáneamente.

Esta influencia del extremo implica que la distribución de tensiones es simétrica en el eje axial y sus valores dependen de la distancia al extremo. Por esta razón, es suficiente con analizar la mitad axial del rotor, la otra tendrá resultados simétricos. Además, es conveniente tomar el origen de coordenadas axiales \(z \) en el extremo del cilindro, como se ha hecho desde el principio del capítulo 2 en la figura 2.1. Para mantener las relaciones geométricas, se toma como distancia de referencia el grosor del cilindro \(t \), o sea la diferencia entre radio exterior e interior, y la distancia \(z \) se expresa en unidades relativas de \(z/t \).

Los límites entre las zonas varían en función de las relaciones geométricas del rotor y de las propiedades del material. Aunque, en realidad no existen fronteras definidas entre las zonas, esta división es únicamente para facilitar la exposición y no influye en los resultados del cálculo. Los límites que aquí se consideran son aproximados y su posición en \(z \) es algo subjetiva, dependen del grado de precisión que se imponga en el cumplimiento de las condiciones de zona libre y de zona uniforme. El más significativo para el estudio
de tensiones es la frontera entre la zona de transición y la uniforme, y a su posición en z se denomina \(z_u \), figura 4.9.

A nivel orientativo se puede avanzar que los límites entre zonas, después de realizar el cálculo en MEF de algunos ejemplos, están situados a unas distancias aproximadas de:

- La zona cercana al extremo libre de \(z/t = 0 \) a \(z/t \simeq 0,2 \).
- La zona intermedia o de transición entre \(z/t \simeq 0,2 \) y \(z_u/t \simeq 2 \).
- La zona alejadas o uniforme a partir de \(z_u/t \simeq 2 \).

4.2.3. Propiedades de las zonas libre y uniforme

La zona libre y la uniforme se pueden caracterizar fácilmente, cumplen unas condiciones de tensión o deformación conocidas y se pueden calcular con los sistemas estudiados anteriormente.

La zona próxima al extremo es la más simple de caracterizar, cumple la condición de tensión axial \(\sigma_z = 0 \) y, por lo tanto, se calcula en condiciones de TP. En esta zona se puede incluir, además de la superficie libre, los puntos cercanos al extremo, en los cuales la tensión \(\sigma_z \) es suficientemente pequeña para que no influya sobre el estado de tensiones ni en la resistencia. Para el cálculo son válidas las ecuaciones del desplazamiento radial \(u(r) \), las tensiones \(\sigma_\theta(r) \) y \(\sigma_r(r) \) y la deformación \(\varepsilon_z(r) \) deducidas en los capítulos anteriores.

La deformación axial \(\varepsilon_z \) en condiciones de TP, que ha sido poco estudiada en los capítulos anteriores, tiene ahora una importancia decisiva para el análisis de la zona de transición. Su valor se denomina \(\varepsilon_z^0 \), por coincidir con el valor en \(z = 0 \), y varía con \(r \) porque es función, en ausencia de tensiones residuales, de \(\sigma_\theta(r) \) y \(\sigma_r(r) \) según la ecuación 2.35

\[
\varepsilon_z^0(r) = -\frac{\nu_\theta}{E_\theta} \sigma_\theta - \frac{\nu_r}{E_r} \sigma_r
\]
\[(4.25)\]

La zona alejada del extremo también se caracteriza fácilmente, incluso con más exactitud que la zona del extremo. Su principal propiedad es no hallarse bajo la influencia del extremo libre del cilindro y, por lo cual, las tensiones y deformaciones son uniformes en z. Los puntos situados a una distancia superior a \(z_u \) se pueden considerar iguales y cumplen la condición de DAC, analizada en el apartado 4.1.2.

Todos sus parámetros son independientes de la posición axial \(z \), y se pueden expresar con funciones del radio, del tipo \(u(r), \sigma_\theta(r), \sigma_r(r) \) y \(\sigma_z(r) \), a excepción de la deformación axial \(\varepsilon_z \) que también es independiente del radio. Esta última se calcula mediante el proceso iterativo del apartado 4.1.4, y corresponde al valor uniforme \(\varepsilon_z^u \). La tensión axial \(\sigma_z \) es especialmente útil para analizar las tensiones en la zona de transición y para distinguir su valor del de otras posiciones \(z \) inferiores a \(z_u \), se denomina \(\sigma_z^u \). En ausencia de tensiones residuales se determina con la fórmula 4.10

\[
\sigma_z^u(r) = \nu_\theta \sigma_\theta + \nu \sigma_r + E_z \varepsilon_z^u
\]
\[(4.26)\]
Los valores de la tensión y la deformación axiales en la zona próxima y alejada son claramente distintos. Las diferencias se pueden comprobar en los resultados de los ejemplos en TP del apartado 2.2.7 y en DAC del 4.1.5. En ellos los datos del rotor eran los mismos: fabricado de fibra de vidrio, de radios $r_i = 0.3$ y $r_e = 0.5$ m y con velocidad angular $\omega = 10000$ rpm. En los dos gráficos de la figura 4.10 se reproducen los resultados de las deformaciones y tensiones axiales de ambos ejemplos, figuras 2.6 y 4.2. En el gráfico de deformaciones el resultado de TP, ε^0_z correspondiente a $z = 0$, varía con r, mientras que el de DAC, ε^u_z para la zona uniforme $z > z_u$, es constante. En cambio, en las tensiones es inverso, el resultado de TP es una constante igual a cero y el de DAC, σ^u_z, varía con r.

![Gráfico de deformación y tensión axiales](image)

Figura 4.10: Deformación y tensión axiales obtenidas en TP ($z = 0$) y en DAC ($z = z_u$)

En la comparación de los gráficos de la figura 4.10 se observan interesantes coincidencias. En las deformaciones se comprueba que el valor medio de ε^0_z, ponderado por la superficie axial, vale -3.55×10^{-3} m/m y coincide con el valor de ε^u_z calculado en DAC en el apartado 4.1.5. Igual pasa en las tensiones, el valor medio de σ^u_z es cero y coincide con el valor en TP, aunque en este caso no es una coincidencia porque es consecuencia de la condición de contorno del apartado 4.1.4.

También se observa que el gráfico de deformaciones ε^0_z tiene la forma invertida del gráfico de tensiones σ^u_z, son simétricos sobre una línea trazada en el valor medio. En ambos gráficos los puntos de cruce con esta línea son coincidentes, los radios de C y D en las deformaciones son iguales con los de C' y D' en las tensiones.

Estas observaciones no son meras coincidencias, se observan también en otros materiales y en rotores multicapa. Tiene su explicación lógica dada la geometría anular del rotor y el estado de cargas uniforme, y son de gran utilidad para entender el estado global de tensiones del rotor que se estudia en los siguientes apartados.
4.2. MODELO UNIFICADO

4.2.4. Zona de transición

La zona de transición no cumple ninguna condición especial que simplifique el cálculo. No se pueden aproximar al cálculo en tensión plana, dado que la tensión axial no tiene porque ser nula, ni tampoco se puede suponer que la deformación es constante, porque la distancia al extremo es muy corta para que todos los puntos radiales tengan el mismo desplazamiento axial.

Un estudio analítico exhaustivo es demasiado complejo para afrontarlo en este trabajo. Para el cálculo de la resistencia de un rotor no es necesario conocer con exactitud las tensiones en todos puntos, es suficiente determinar las tensiones más desfavorables. Es difícil que en esta zona exista un punto sensiblemente más desfavorable que en el resto, lo más probable es que las tensiones sean intermedias entre las de la zona del extremo y la zona uniforme, de forma que se pueden considerar como puntos de transición entre ambos estados.

Para entender la naturaleza de las deformaciones y tensiones en esta zona de transición se recurre a los resultados de los ejemplos anteriores. Si los valores del extremo, obtenidos en TP, se comparan con los de la zona uniforme, obtenidos en DAC, se observa que las diferencias en la tensión tangencial σ_θ, la radial σ_r y el desplazamiento u son mínimas, tanto en las de origen centrífugo, figuras 2.6 y 4.2, como las térmicas, 3.3 y 4.5, y las de hidratación, 3.9 y 4.7. Si en ambas zonas los resultados son similares, teniendo condiciones muy distintas, se puede concluir que en los puntos de la zona de transición, que tiene condiciones intermedias, siguen siendo similares. Además, la tensión cortante $\tau_{r\theta}$ creada por la aceleración angular debe ser también uniforme porque sus valores son independientes de la posición axial, como se ha descrito en el apartado 2.3.2.

Las únicas que varían en la zona de transición son la tensión axial σ_z y la deformación axial ε_z, tal como se ha expuesto en los gráficos resumidos de la figura 4.10. Luego, el estudio de esta zona se centra en analizar la evolución de estos dos parámetros a lo largo de z_u de transición. Para ello es necesario introducir dos nuevos parámetros que van ligados a ellos, la tensión cortante τ_{rz} y el desplazamiento axial w de la figura 4.11. Dada la simetría de la sección longitudinal es suficiente con estudiar hasta $l/2$, y el eje de simetría se toma como origen para el desplazamiento axial w.

![Figura 4.11: Parámetros para el estudio de la zona de transición.](image-url)
El cálculo de la zona de transición, entre AB y A’B’, se reduce básicamente a determinar la tensión \(\sigma_z \) y de la deformación \(\varepsilon_z \) en función de \(r \) y \(z \). El resultado son unas ecuaciones del tipo \(\sigma_z(r, z) \) y \(\varepsilon_z(r, z) \) que posteriormente se aplican al cálculo del resto de tensiones.

Para deducir estas ecuaciones se disponen de pocos datos ciertos, a parte de la condición de fuerza axial nula que se debe cumplir en todas las sección perpendicular al eje para cualquier posición \(z \). A partir de los cálculos en TP y en DAC se conocen los valores iniciales y finales de ambas ecuaciones, mostrados en la figura 4.10, que corresponden a \(z = 0 \) y \(z = z_u \) respectivamente. Sobre ellos, se han comentado en el apartado anterior algunas coincidencias interesantes para estudiar su progresión en \(z \). En la figura 4.12 se representan los mismos resultados pero sobre una sección longitudinal de la zona transitoria, los de TP en AB (\(z = 0 \)) y las de DAC en A’B’ (\(z = z_u \)).

Los gráficos de \(\sigma_z \) y \(\varepsilon_z \) de la figura 4.12 son muy útiles para entender el proceso de transición de ambos parámetros. Al inicio, sobre el borde libre AB en \(z = 0 \), la deformación \(\varepsilon_z^0 \) varía en \(r \) y la tensión \(\sigma_z \) es nula. Al final, sobre el límite con la zona uniforme A’B’ en \(z = z_u \), la deformación \(\varepsilon_z^u \) es constante y la tensión \(\sigma_z^u \) es función de \(r \). Los valores medios en ambos gráficos son iguales: la deformación media de \(\varepsilon_z^0 \), denominada \(\varepsilon_z^m \), coincide con la deformación constante \(\varepsilon_z^u \) y la tensión media de \(\sigma_z^u \) coincide con el valor cero del extremo. También se representan las coincidencias en los radios de cruce de las dos funciones variables: los radios de C y D en la curva de \(\varepsilon_z^0 \) coinciden con los radios de C’ y D’ en la curva de \(\sigma_z^u \). Por todo ello se deduce que a lo largo de \(z_u \) la deformación \(\varepsilon_z \) y la tensión \(\sigma_z \) sufren una redistribución interna en los sucesivos radios hasta uniformarse a partir de \(z_u \).

Figura 4.12: Deformaciones y tensiones al inicio y la final de la zona de transición, calculadas en TP para \(z = 0 \) y en DAC para \(z = z_u \).

Ambos procesos de redistribución en \(z \) tienen lugar en sentidos inversos. La deformación es variable en \(r \) al inicio, en \(z = 0 \), y constante en \(z = z_u \), mientras que la tensión es variable en \(z = z_u \). También son inversas las pendientes en \(r \), la deformación \(\varepsilon_z^0 \) tiene curvatura positiva mientras que en la tensión es negativa. Si a la deformación \(\varepsilon_z^0 \) se le
4.2. MODELO UNIFICADO

resta el valor medio \(\varepsilon_z^m \), queda un valor variable en \(r \), denominado \(\varepsilon_z^v \), que se redistribuye a cero en el otro extremo, igual que la tensión \(\sigma_z^u \) pero en sentido inverso.

Estas coincidencias se explican por la uniformidad en las cargas y continuidad elástica. Las líneas axiales CC' y DD' mantienen la deformación y la tensión constantes en \(z \). En otra línea cualquiera en donde la deformación inicial \(\varepsilon_z^0 \) supera en \(\varepsilon_z^v \) al valor medio \(\varepsilon_z^m \) necesita una tensión axial que comprima y genere una deformación que compense el exceso, hasta reducirlo al valor medio en \(z_u \). Este proceso parece simple pero es necesario hallar la ley de progresión en \(z \) de las tensiones.

Esta progresión o proceso de creación de tensiones axiales a través de \(z \) debe ser tal que cumpla la condición de fuerza axial nula en todos los radios intermedios. Se sabe que la distribución tensión axial \(\sigma_z^u \) cumple esta condición porque así se ha impuesto al calcular \(\varepsilon_z^u \) en el apartado 4.1.4. Las distribuciones situadas en posiciones \(z \) intermedias también cumplen si sus valores mantienen una misma proporción respecto de \(\sigma_z^u \), como se representa en la figura 4.13(a). Luego, se cumple si todas las líneas axiales, de radio \(r \) constante, tienen la misma progresión en las tensiones axiales, como se representa en la figura 4.13(b).

Figura 4.13: Evolución de la tensión axial en la zona transitoria desde \(\sigma_z = 0 \) hasta \(\sigma_z^u \); (a) sobre cada radio y (b) en \(z \).

Si la progresión es la misma la tensión axial en la zona de transición se puede determinar mediante una función de dos variables separadas, los valores finales \(\sigma_z^u \) función de \(r \), y una ley de progresión función de \(z \), denominada \(\varphi \). La tensión \(\sigma_z^u \) es el valor máximo y la función de progresión aumenta con \(z \), desde cero en \(z = 0 \) a 1 en \(z = z_u \). Así, la tensión en un punto cualquiera, de coordenadas \((r, z)\), se determina con el producto de las dos funciones independientes

\[
\sigma_z(r, z) = \varphi(z) \sigma_z^u(r)
\]

(4.27)

La función de progresión \(\varphi(z) \) representa la capacidad de un rotor para crear tensiones \(\sigma_z \) a medida que aumenta \(z \) y, en consecuencia, de compensar las diferencias de la deformación axial \(\varepsilon_z^v \). Esta capacidad depende de las proporciones geométricas y de las propiedades elásticas del material.
A partir de los valores $\sigma_z(r, z)$ de la ecuación 4.27 se puede determinar $\varepsilon_z(r, z)$ aplicando la ecuación 2.6. La función de progresión φ, definida sobre σ_z, se podría sustituir por otra función similar aplicada en la deformación ε_z, que a su vez determinaría σ_z. Pero es razonable definirla sobre la tensión porque facilita el cumplimiento de la condición de fuerzas axial y se puede aplicar directamente en las ecuaciones de cálculo por resistencia. Ambos casos son una simplificación del comportamiento real de la zona transitoria y los resultados son aproximados.

4.2.5. Función de progresión aproximada

Una vez descritas las características de la zona transitoria se determina la función de progresión φ para la tensión axial de la ecuación 4.27. La creación de la tensión axial σ_z está causada por la variación de la tensión cortante τ_{rz} en la dirección r, como se muestra en la figura 4.14, debido al equilibrio de fuerzas en z

$$\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{rz}}{\partial r} = 0$$

La tensión cortante τ_{rz} está generada por la distorsión angular γ_{rz} debida a la variación del desplazamiento axial w a largo de r, a su vez el desplazamiento es consecuencia de la deformación axial ε_z. Ambas, γ_{rz} y ε_z, se relacionan mediante las funciones cinéticas del plano axial de la figura 4.11, en donde el sentido de w es inverso de z.

$$\varepsilon_z = \frac{\partial w}{\partial z}$$

$$\gamma_{rz} = -\frac{\partial w}{\partial r} + \frac{\partial u}{\partial z}$$

En el apartado anterior se ha expuesto que el valor medio de la deformación axial ε_z^m coincide con el valor uniforme ε_z^u y es constante en cualquier posición de z y r, como se representa en la figura 4.12. Este valor uniforme crea un desplazamiento axial, denominado uniforme w_u, que es lineal en z y constante en r, y el desplazamiento total w se puede expresar como suma de w_u más otro término llamado transitorio w_t, que sólo existe en la zona transitoria.

$$w_u(z) = z \varepsilon_z^u ; \quad w(r, z) = w_u(z) + w_t(r, z)$$

de ellos solamente w_t es variable en r y capaz originar tensión axial, por lo cual, objeto de estudio.

Por otra parte, la deformación axial, en ausencia de tensiones residuales, es función, según la ecuación 2.6, de las tres tensiones

$$\varepsilon_z(r, z) = -\frac{\nu_{z\theta}}{E_\theta} \sigma_\theta(r) - \frac{\nu_{zr}}{E_r} \sigma_r(r) + \frac{1}{E_z} \sigma_z(r, z)$$

$$\varepsilon_z^u + \varepsilon_z^u(r)$$
4.2. MODELO UNIFICADO

De las cuales se considera que las tensiones σ_θ y σ_r varían sólo en r porque, como se ha comentado en el apartado anterior, son prácticamente constantes en z. A su vez, generan por efecto Poisson una deformación axial también constante en z y, por lo tanto, debe coincidir con el valor en el extremo ε^0_z. Dicho valor de la deformación axial, al igual que ε^0_z, se puede expresar como suma del valor medio o uniforme ε^u_z, constante en z y en r, y un valor variable ε^v_z, función de r.

En la ecuación 4.31 los dos términos distintos del uniforme son los causantes del desplazamiento transitorio w_t de la ecuación 4.30, y constituyen la deformación denominada transitoria ε^t_z porque sólo existe en la zona de transición

$$\varepsilon^t_z(r, z) = \varepsilon^u(r) + \frac{1}{E_z}\sigma_z(r, z) \quad (4.32)$$

y la deformación total de la ecuación 4.31 queda

$$\varepsilon_z(r, z) = \varepsilon^u_z + \varepsilon^t_z(r, z)$$

Es importante notar que el factor ε^v_z es independiente de z y, por lo tanto, el valor ε^0_z determinado en $z = 0$, figura 4.13, es el mismo para cualquier posición en z. Aplicando la ecuación 4.29(a) sólo para los términos transitorios de la ecuación 4.32 se cumple

$$w_{t, z} = \varepsilon^u_z + \frac{1}{E_z}\sigma_z \quad (4.33)$$

El valor de w_t es cero en z_u porque w coincide con w_u de la zona uniforme. Es lógico porque en z_u la tensión axial σ^u_z logra compensar totalmente la deformación variable ε^v_z. En cambio, el valor de w_t es máximo en $z = 0$ y se denomina w^0_t, como se indica en la figura 4.14. Su distribución en r es parecida a la ε^0_z de la figura 4.12.

Figura 4.14: Desplazamiento axial en los límites de la zona de transición y tensiones en los puntos intermedios.

Para relacionar el desplazamiento axial con la tensión cortante hay que aplicar la relación constituyente en el plano rz.
CAPÍTULO 4. MEJORA DE LOS SISTEMAS DE TENSIONES

\[\gamma_{rz} = \frac{\tau_{rz}}{G_{rz}} \]

(4.34)

a la ecuación 4.29(b) y se obtiene

\[\tau_{zr} = G_{zr} (-w_t + u_z) \]

Esta ecuación se simplifica al sustituir, según la ecuación 4.30, la derivada de \(w \) en \(r \) por la derivada de \(w_t \) y al despreciar la derivada de \(u \) en \(z \). El desplazamiento radial \(u \) debe ser constante en \(z \) porque el rotor no puede tomar la forma de tonel debido a la enorme rigidez tangencial, solamente los puntos muy próximos al extremo en los cuales sufre una pequeña variación que se analizará más abajo.

\[\tau_{zr} = G_{zr} (-w_t, r) \]

(4.35)

Derivando respecto de \(z \) y sustituyendo la derivada del desplazamiento \(w_t \) por la ecuación 4.33 se obtiene

\[\tau_{zr,z} = -G_{zr} \left(\varepsilon_{z,r}^v + \frac{1}{E_z} \sigma_{z,r} \right) \]

(4.36)

Para unificar esta función con la ecuación de equilibrio 4.28 en una fórmula general se deriva aquélla por \(z \) y ésta por \(r \), obteniendo la ecuación diferencial de segundo grado siguiente

\[\sigma_{z,zz} - \frac{G_{zr}}{E_z} \sigma_{z,rr} = G_{zr} \varepsilon_{z,rr}^v \]

(4.37)

Esta ecuación no se puede resolver directamente, es necesario introducir algunas relaciones entre las tres variables que simplifiquen las incógnitas. De la ecuación 4.27 se deduce que la doble derivada en \(r \) de \(\sigma_z \) es igual a la doble derivada de \(\sigma_u \) multiplicada por el parámetro \(\varphi \), que a su vez, se sustituye por la propia ecuación 4.27, y queda de la siguiente forma

\[\sigma_{z,rr} = \varphi \sigma_{z,rr}^u = \frac{\sigma_{z,rr}^u}{\sigma_z} \sigma_z \]

(4.38)

La variable \(\varepsilon_{z,rr}^v \) se puede sustituir por una función de \(\sigma_{z,rr}^u \) si se considera que las tensiones \(\sigma_\theta \) y \(\sigma_r \) son prácticamente constantes en \(z \), como se ha dicho anteriormente. Para ello la ecuación 4.31 debe aplicarse simultáneamente a \(z = 0 \) y a \(z = z_u \).

En \(z = 0 \) la tensión \(\sigma_z \) es nula y la deformación de la ecuación 4.31 vale

\[\varepsilon_z(r) = -\frac{\nu_{z\theta}}{E_\theta} \sigma_\theta(r) - \frac{\nu_{zr}}{E_r} \sigma_r(r) \]

Su derivada respecto de \(r \) es igual a la derivada del término variable \(\varepsilon_z^v \), o sea
4.2. MODELO UNIFICADO

\[\varepsilon_{z,rr}^v = -\frac{\nu_z}{E_\theta} \sigma_{\theta,rr} - \frac{\nu_z}{E_r} \sigma_{r,rr} \]

(4.39)

En \(z = z_u \) la tensión vale \(\sigma_z = \sigma_z^u \) y la deformación es constante, \(\varepsilon_z = \varepsilon_z^u \), y vale

\[\varepsilon_z^u = -\frac{\nu_z}{E_\theta} \sigma_{\theta}(r) - \frac{\nu_z}{E_r} \sigma_{r}(r) + \frac{1}{E_z} \sigma_z^u(r) \]

Su derivada en \(r \) es nula y se obtiene

\[0 = -\frac{\nu_z}{E_\theta} \sigma_{\theta,rr} - \frac{\nu_z}{E_r} \sigma_{r,rr} + \frac{1}{E_z} \sigma_z^u,rr \]

(4.40)

Luego de estas dos ecuaciones, 4.39 y 4.40, se deduce la relación

\[\varepsilon_{z,rr}^v = -\frac{1}{E_z} \sigma_z^u,rr \]

(4.41)

Finalmente, sustituyendo las ecuaciones 4.38 y 4.41 a la ecuación 4.37 que una ecuación diferencial fácilmente resoluble

\[\sigma_{z,zz} - \frac{G_{zr}}{E_z} \frac{\sigma_{z,rr}}{\sigma_z^u} \sigma_z = -G_{zr} \sigma_z^u,rr \]

(4.42)

Definiendo un parámetro \(n \) que agrupa variables

\[n^2 = \frac{G_{zr}}{E_z} \frac{\sigma_{z,rr}^u}{\sigma_z^u} \]

(4.43)

la ecuación diferencial 4.42 queda

\[\sigma_{z,zz} - n^2 \sigma_z = -n^2 \sigma_z^u \]

(4.44)

La solución es

\[\sigma_z = c_1 e^{nz} + c_2 e^{-nz} + \sigma_z^u \]

(4.45)

en donde las constantes \(c_1 \) y \(c_2 \) se determinan mediante las condiciones de contorno

\[z = 0 \quad \Rightarrow \quad \sigma_z = 0 \]

\[z = z_u \quad \Rightarrow \quad \frac{\partial \sigma_z}{\partial z} = 0 \]

(4.46)

y se obtiene

\[c_1 = -\sigma_z^u \frac{e^{-nz_u}}{e^{nz_u} + e^{-nz_u}} \quad ; \quad c_2 = -\sigma_z^u \frac{e^{nz_u}}{e^{nz_u} + e^{-nz_u}} \]

(4.47)
Finalmente la tensión axial de la ecuación 4.45 es

\[
\sigma_z = \sigma_z^u \left(1 - \frac{e^{n(z_u - z)} + e^{-n(z_u - z)}}{e^{nz_u} + e^{-nz_u}} \right)
\]

(4.48)
y la función de progresión \(\varphi(z) \) definida en la ecuación 4.27 es

\[
\varphi = 1 - \frac{e^{n(z_u - z)} + e^{-n(z_u - z)}}{e^{nz_u} + e^{-nz_u}}
\]

(4.49)

En esta ecuación el valor de \(z_u \) influye poco en el resultado final, siempre que sea suficientemente elevado. Hay que tener en cuenta que la definición de \(z_u \) es más conceptual que real, como se ha comentado más arriba, en el apartado siguiente se sustituirá por un valor físico, \(l/2 \). Respecto del parámetro \(n \), definido en la ecuación 4.43, se comprueba que su valor es bastante constante en \(r \) excepto en los puntos donde el valor de \(\sigma_z^u \) es próximo a cero, pero en estos la función \(\varphi \) tiene poca importancia en el cálculo de resistencia porque la tensión es baja. Luego el error cometido en el apartado 4.2.4 al considerar \(\varphi \) constante en \(r \) es poco importante.

Para comprobar esta ecuación de \(\varphi(z) \) se aplica al rotor de fibra de vidrio de los apartados anteriores. Sus valores se representan en la figura 4.15 y se comparan con los obtenidos en MEF.

![Figura 4.15: Comparación de la función de progresión \(\varphi \) obtenida en el modelo simple y en el cálculo por MEF.](image)

Se observa que la forma es creciente como se ha mostrado en la figura 4.13. El valor es cero en \(z = 0 \) y tiende asintóticamente a 1 en \(z \) elevadas, aunque se asume que el valor es la unidad a partir de un cierto punto, el cual se ha designado por \(z = z_u \).
4.2. MODELO UNIFICADO

Si se comparan los resultados de la ecuación con los puntos obtenidos en MEF se observa que la coincidencia es buena, a pesar de las varias simplificaciones introducidas durante el cálculo. Cabe destacar la diferencia de pendientes en las proximidades de \(z = 0 \), en el gráfico de la ecuación la pendiente es muy pronunciada, mientras que en MEF es suave, prácticamente nula. Este fenómeno se explica por el efecto de borde y se atribuye a la simplificación de la ecuación 4.35, en la cual se ha despreciado la variación de \(u \) en \(z \). Este desplazamiento sólo existe en las proximidades del borde libre y está relacionado con la tensión cortante \(\tau_{rz} \) que se estudiará más adelante.

La tensión cortante \(\tau_{rz} \) se determina a partir de la tensión axial \(\sigma_z \) de la ecuación 4.28

\[
\tau_{rz} = -\int \sigma_{z,z} dr
\]

(4.50)

Sus valores se determinan por cálculo numérico porque en este caso es más simple que el cálculo analítico. Además, permite introducir el valor adecuado de \(n \) obtenido en la fórmula 4.43 que varía ligeramente con \(r \) debido al cociente \(\sigma_{z,rr}/\sigma_z^u \).

En la figura 4.16 se presentan los resultados de la tensión axial \(\sigma_z \) y tensión cortante \(\tau_{rz} \) para el ejemplo del rotor sometido a fuerzas centrífugas del apartado 4.1.5, con el que se generaron los gráficos de la figura 4.10. Se representan las tensiones en función de \(z \), desde el borde del rotor en \(z = 0 \) hasta \(z = 0,6 \) mm (\(z/t = 3 \)). En el cálculo se obtiene una curva distinta para cada radio pero aquí sólo se muestra la curva de mayor tensión, para \(\sigma_z \) corresponde a \(r = 0,5 \) m y para \(\tau_{rz} \) a \(r = 0,45 \) m. El valor máximo de \(\sigma_z \) está situado en el punto más alejado del extremo, y su valor de \(-15 \) MPa coincide con la tensión máxima de \(\sigma_z \) de la figura 4.10, situada en \(r = 0,5 \). La tensión \(\tau_{rz} \) decrece en \(z \) y su valor máximo en el extremo del rotor, en \(z = 0 \), es \(-5 \) MPa. Estos valores,
especialmente el de τ_{rz}, son muy inferiores a los valores máximos de las tensiones σ_θ y σ_r del rotor, 410 MPa y 30 MPa respectivamente, determinados en el apartado 4.1.5.

Este cálculo es aceptablemente correcto para la determinación de la tensión axial σ_z, como se muestra en la figura 4.15, pero es deficiente para la tensión τ_{rz}. En el borde, en $z = 0$ de la figura 4.14, no puede existir físicamente ninguna tensión cortante y, en consecuencia, este resultado no es aceptable. Esta cuestión será motivo de un análisis más profundo en el apartado 4.2.7.

4.2.6. Rotores de longitud corta

Lo expuesto hasta ahora es aplicable directamente a los rotores de longitud larga, en los que se distinguen claramente la zona uniforme y la transitoria, pero cabe preguntarse cómo se comporta un rotor de longitud corta que no tenga zona uniforme.

En ese caso la longitud $z_0 = l/2$ de la figura 4.11 es inferior a z_u y la tensión y la deformación axiales no llegan a uniformizarse. Las condiciones en el extremo libre del rotor son las mismas y el proceso de formación de la tensión axial en la zona transitoria es parecido, luego se puede aplicar el método de la función de progresión $\varphi(z)$ pero modificando las condiciones en el límite interior. En la ecuación 4.46 la condición de pendiente nula en la zona uniforme, en z_u, debe sustituirse por la condición de pendiente nula en el plano de simetría axial del rotor, o sea en z_0

$$z = z_0 \quad \Rightarrow \quad \frac{\partial \sigma_z}{\partial z} = 0 \quad (4.51)$$

Con esta modificación la función $\varphi(z)$ de la ecuación 4.49 queda igual pero sustituyendo z_u por z_0

$$\varphi = 1 - \frac{e^{n(z_0-z)} + e^{-n(z_0-z)}}{e^{nz_0} + e^{-nz_0}} \quad (4.52)$$

Durante el cálculo se aplican los conceptos de ε_z y σ_z^u aunque físicamente no existen en el rotor. La tensión axial máxima se halla en $z = l/2$ y su valor es inferior a σ_z^u.

En los gráficos de la figura 4.17 se presenta la nueva función φ para el rotor del ejemplo anterior pero con longitud corta. Se representa el resultado de distintos rotores, con longitudes crecientes, 0.1, 0.2, 0.4, 0.6 y 0.8 m, y con el mismo grosor de pared, $t = 0.2$ m. Se observa que el valor máximo para longitudes grandes es próximo a la unidad y para longitudes inferiores decrece rápidamente. En rotores de $l/2$ inferior a $0.5t$ el valor de φ no llega a 0,3 y σ_z es despreciable en los cálculos.

Con esta generalización se comprueba que el valor de la distancia z_u no tiene importancia a efectos de cálculo de tensiones, porque se puede aplicar $z_0 = l/2$ y utilizar la ecuación 4.52 en los casos que la longitud del rotor sea grande. La distancia z_u ha sido útil para describir la generación de la tensión axial y deducir la ley de progresión.
4.2.7. Consideraciones sobre la tensión cortante axial

El sistema de cálculo de la tensión cortante \(\tau_{rz} \) expuesto en el apartado 4.2.5 es incompleto porque el resultado de la tensión cortante \(\tau_{rz} \) en el extremo, en \(z = 0 \), no es cero. En realidad, su valor es nulo porque está junto al borde libre, y los valores de \(\varphi \), en la figura 4.15, son aproximados, sobre todo en los puntos cercanos al extremo. A continuación se analiza con más profundidad el comportamiento de la tensión cortante \(\tau_{rz} \) en la zona próxima al extremo y se deduce una nueva función de \(\varphi \), más completa, que se adapta mejor al comportamiento real. Este efecto es parecido al estudiado por Pagano y otros (1989) [37], aunque en aquel caso se aplica a placas planas laminadas y con tensiones de borde originadas por la diferencia en la orientación del laminado de fibra.

En el estudio se analiza primero el efecto de borde y, posteriormente, se aplica al caso de la tensión axial. El efecto de borde se analiza sobre la sección longitudinal de la figura 4.9, en la cual se sustituye la deformación axial \(\varepsilon_z \) de la figura 4.12 por una deformación angular \(\gamma_{rz} \) de valor constante, denominada \(\gamma_{rz}^u \) y se determina la tensión cortante \(\tau_{rz} \) generada en una franja de espesor diferencial, \(dr \), sobre una línea AB en dirección \(z \), figura 4.18(a).

En el punto B, situado lejos del extremo, se genera una tensión cortante uniforme \(\tau_{rz}^u \)

\[
\tau_{rz}^u = G_{rz} \gamma_{rz}^u
\]

(4.53)

En cambio, en el punto A, situado sobre la superficie libre del extremo, la tensión debe ser necesariamente nula. En los puntos intermedios próximos al extremo la tensión \(\tau_{rz} \) varía con \(z \), desde el valor uniforme \(\tau_{rz}^u \) hasta anularse en \(z = 0 \), tal como se observa en la zona AC de la figura 4.18(d). Su progresión es similar a la variación de la tensión axial
CAPÍTULO 4. MEJORA DE LOS SISTEMAS DE TENSIONES

σz de la figura 4.13, pero aquí la distancia z de la zona de transición es mucho menor.

Esta variación de la tensión cortante se deduce analizando los desplazamientos, radial u y axial w, figura 4.18(b), y las tensiones en dirección radial, σr y τrz, figura 4.18(c). Su disminución es consecuencia de la aparición del desplazamiento radial u en las proximidades del extremo libre que contrarresta la deformación γrzu.

En todos los puntos debe cumplirse la ecuación 4.29(b), aunque en este caso el término u,z debe considerarse también negativo, al igual que w,r, porque el extremo libre se halla en la dirección negativa de z

\[\gamma_{rz} = -w,r - u,z \] \hspace{1cm} (4.54)

Cuando se aplica en el extremo, en z = 0, se observa que la tensión τrz y deformación angular γrz son nulas y las derivadas se compensan, w,r = −u,z. Pero, si se aplica a la zona uniforme el ángulo γrz vale γrz u y el desplazamiento radial u es nulo

\[\gamma_{rz}^u = -w,r \] \hspace{1cm} (4.55)

Luego, la ecuación 4.54 significa que en todos los puntos se cumple que el valor aplicado γrz u es suma de la deformación angular y la derivada de u

\[\gamma_{rz}^u = \gamma_{rz} + u,z \] \hspace{1cm} (4.56)

que expresada en función de la tensión cortante uniforme τrz u y la tensión local τrz queda

\[\frac{\tau_{rz}^u}{G_{rz}} = \frac{\tau_{rz}}{G_{rz}} + u,z \] \hspace{1cm} (4.57)

Las tensiones en dirección radial de la figura 4.18(c) cumplen la ecuación de equilibrio
\[\sigma_{r,r} + \tau_{zr,z} = 0 \]
(4.58)

en la cual la tensión radial es función de \(\varepsilon_r \), según la ecuación 2.6, si se desprecian los efectos de Poisson de las otras tensiones

\[\sigma_r \simeq E_r \varepsilon_r \]
(4.59)

que a su vez, se puede sustituir por el desplazamiento radial, según la ecuación 2.5(b)

\[\sigma_r = E_r u_r \]
(4.60)

De las ecuaciones 4.57, 4.58 y 4.60 se deduce la ecuación diferencial de la tensión cortante para la franja en \(z \) sometida a una deformación constante \(\gamma^u_{rz} \)

\[\tau_{rz,zz} - E_r \frac{\tau_{rz,rr}}{G_{rz}} = -E_r \frac{\tau^u_{rz,rr}}{G_{rz}} \]
(4.61)

Esta ecuación es muy parecida a la ecuación diferencial 4.37 de la tensión axial en el apartado 4.2.5 y se resuelve aplicando una simplificación similar. La tensión cortante \(\tau_{rz} \) se sustituye por el valor final \(\tau^u_{rz} \), función de \(r \), y un parámetro de progresión \(\psi \), función de \(z \), de manera quedan las variable separadas igual que en \(\sigma_z \) de la ecuación 4.27.

\[\tau_{rz}(r,z) = \psi(z) \tau^u_{rz}(r) \]
(4.62)

Con el mismo razonamiento de la ecuación 4.38 se deduce

\[\tau_{rz,rr} = \frac{\tau^u_{rz,rr}}{\tau^u_{rz}} \tau_{rz} \]
(4.63)

y la ecuación 4.61 queda

\[\tau_{rz,zz} - m^2 \tau_{rz} = -m^2 \tau^u_{rz} \]
(4.64)

en donde el parámetro \(m \) agrupa las propiedades elásticas y el cociente de la tensión uniforme

\[m^2 = \frac{E_r \tau^u_{rz,rr}}{G_{rz} \tau^u_{rz}} \]
(4.65)

Su solución matemática es la misma que en la ecuación 4.44, o sea

\[\tau_{rz} = c_1 e^{mz} + c_2 e^{-mz} + \tau^u_{rz} \]
(4.66)
y aplicando las condiciones de contorno de la figura 4.18, en \(z = 0 \) \(\tau_{rz} = 0 \) y en \(z = \infty \) \(\tau_{rz} = \tau_{rz}^u \), se obtiene

\[
\tau_{rz} = \tau_{rz}^u (1 - e^{-mz}) \tag{4.67}
\]

Luego, la formación de la tensión cortante en las cercanías del borde libre es una función exponencial de \(m \) que, según la ecuación 4.65, depende de las propiedades del material y de la tensión cortante en la zona uniforme \(\tau_{rz}^u(r) \).

Cabe recordar que la deformación angular \(\gamma_{rz}^u \) de un rotor sometido a fuerza centrífrica y sin considerar el efecto de borde anterior no sería constante en \(z \), sino que su valor variaría según la función de la tensión \(\tau_{rz} \) en la figura 4.16. No obstante, la resolución desarrollada para una deformación angular constante tiene interés por haber encontrado el parámetro de progresión exponencial \(m \) que determina la formación de la tensión cortante en las cercanías del borde libre.

El valor de la tensión \(\tau_{rz} \) determinado en el apartado 4.2.5, figura 4.16, debe modificarse con el efecto de borde, según el parámetro de progresión exponencial \(m \). Para ello no se puede aplicar directamente la ecuación 4.67 porque la tensión \(\tau_{rz}^u \) no sea constante en \(z \) y no está definida la deformación angular \(\gamma_{rz}^u \) ni la tensión \(\tau_{rz}^u \). No obstante, el proceso mecánico para la generación de la tensión \(\tau_{rz} \) en las proximidades del borde libre es el mismo y, por lo tanto, la constante \(m \) se conserva.

Para determinar la función exacta de \(\tau_{rz} \) en \(z \) habría que aplicar las consideraciones anteriores al proceso deductivo de \(\sigma_z \) del apartado 4.2.5. Pero su resolución analítica es compleja y no compensa porque no influye a penas en el cálculo de la rotura del rotor. Se estima suficiente un cálculo aproximado, consistente en replantear la relación entre \(\sigma_z \) y \(\tau_{rz} \) de la ecuación 4.28 utilizando la nueva función de progresión de \(\tau_{rz} \) y las funciones determinadas en el apartado 4.2.5.

Se considera que la tensión cortante de la ecuación de equilibrio 4.28 inicial

\[
\sigma_{z,z} + \tau_{rz,r} = 0 \tag{4.68}
\]

está afectada por la ecuación 4.67 y su derivada es

\[
\tau_{rz,r} = \tau_{rz,r}^u (1 - e^{-mz}) \tag{4.69}
\]

A su vez, el término \(\tau_{rz,r}^u \) se determina mediante la ecuación 4.50, aplicando la función de la tensión axial \(\sigma_z \) aproximada de la ecuación 4.45. De manera que se obtiene una nueva tensión axial

\[
\sigma_z = \int (C_1e^{nz} + C_1e^{-nz} + \sigma_z^u) \, dz + \int e^{-mz}(C_1e^{nz} + C_1e^{-nz} + \sigma_z^u) \, dz
\]

con unas nuevas constantes de integración que se determinan con las mismas condiciones de contorno del apartado 4.2.6.
4.2. MODELO UNIFICADO

\[z = 0 \ \Rightarrow \ \sigma_z = 0 \]
\[z = z_0 \ \Rightarrow \ \frac{\partial \sigma_z}{\partial z} = 0 \] (4.70)

en donde \(z_0 = l/2 \) según la figura 4.11. La solución de \(\sigma_z \) es una función igual a la ecuación 4.27, pero la ley de progresión \(\varphi \) simple de la ecuación 4.52 queda sustituida por una función más completa

\[\varphi = 1 - \frac{(n - m)[1 + \frac{n}{m}(1 - e^{-mz})]e^{n(z_0-z)} - (n + m)[1 - \frac{n}{m}(1 - e^{-mz})]e^{n(z_0-z)}}{(n - m)e^{nz_0} - (n + m)e^{-nz_0}} \] (4.71)

Si se compara esta nueva ecuación con los resultados de la función \(\varphi \) simple y los de MEF de la figura 4.15 en la nueva figura 4.19, se comprueba que ha mejorado y los valores son prácticamente coincidentes en este ejemplo de MEF. Su pendiente en el origen es también nula, igual que aquellos, gracias a la inclusión del factor exponencial \(e^{-mz} \) de la tensión cortante en la ecuación 4.67. Esta coincidencia no significa que en todos los casos los resultados deban ser tan exactos, para validar definitivamente esta ecuación sería necesario estudiar más puntos y con más ejemplos.

Figura 4.19: Ajuste de la función de progresión \(\varphi \): la ecuación completa 4.71 se acerca más a los resultados de MEF que la ecuación simple 4.52.

En la figura 4.20 se presentan los nuevos resultados de las tensiones \(\sigma_z \) y \(\tau_{rz} \) del ejemplo de la figura 4.16. Se observa que ahora la tensión cortante \(\tau_{rz} \) en el extremo, en \(z = 0 \), es nula y su valor máximo sólo llega a 3MPa. Es importante notar que la forma de estas gráficas son parecidas a las obtenidas por Pagano y otros (1989) [37] para placas planas.
La tensión cortante τ_{rz} tiene valores muy pequeños y es, con diferencia, la menos importante de las tensiones. Siempre será muy inferior a la tensión axial porque depende de la pendiente de σ_z en z, que a su vez, está limitada por las propiedades del material. Además, el punto de valor máximo de la tensión cortante τ_{rz} nunca coincidirá con el punto de valor máximo de la tensión axial.

Con ello se concluye que el efecto de la tensión cortante τ_{rz} sobre el cálculo final del rotor es muy poco importante comparado con las otras tensiones. Por lo tanto, en este trabajo no se tiene en cuenta la tensión cortante τ_{rz} para los estudios de diseño del rotor.

4.2.8. **Modelo unificado**

El método desarrollado para calcular la zona de transición se puede extender a la zona del extremo y la uniforme. Así, los sistemas de cálculo en TP y en DAC son simples casos particulares de la función de progresión φ, de manera que en un único sistema de ecuaciones se incluyen todos los casos.

Antes de exponer el sistema unificado conviene recordar que la función de progresión φ no es exacta, y su aplicación al cálculo de tensiones es aproximado, a excepción de los valor extremos cero y uno. También que el objetivo final del cálculo es determinar el límite de resistencia del rotor, no el estado completo de tensiones, y para ello es suficiente conocer las tensiones del punto más desfavorable, o al menos tener la seguridad que no existe ningún punto que sea significativamente más perjudicial.

La tensión axial de la ecuación 4.2 utilizada al inicio del cálculo de DAC, aplicable a la zona uniforme, se puede extrapolar para cualquier posición mediante la función φ de la
4.2. MODELO UNIFICADO

ecuación 4.27 y la ecuación general queda

\[\sigma_z = \varphi E_z \left(\frac{\nu_{z\theta}}{E_\theta} \sigma_\theta + \frac{\nu_{z\varphi}}{E_r} \sigma_r + \varepsilon_z^u \right) \] (4.72)

De esta forma puede tomar cualquiera de las tres modalidades o zonas mediante el valor de \(\varphi \) adecuado: con \(\varphi = 0 \) la tensión axial es nula y el cálculo se reduce al sistema de TP, con \(\varphi = 1 \) la ecuación 4.72 se convierte en la propia ecuación 4.2 y el cálculo se reduce al sistema de DAC y con un valor es intermedio, entre 0 y 1, corresponde a un punto \(z \) de la zona de transición. Utilizando esta ecuación los tres sistemas se unifican en uno sólo y abarca todas las posiciones de \(z \).

Si se sustituye la ecuación de la tensión axial 4.2 por la ecuación 4.72 se puede rehacer el cálculo de tensiones y deformaciones porque \(\varphi \) es independiente de \(r \). Las ecuaciones de deformaciones 4.3 son idénticas, sólo se introduce el parámetro \(\varphi \) en algunos términos

\[
\begin{align*}
\varepsilon_\theta &= \frac{1}{E_\theta} - \varphi \frac{\nu_{z\varphi}}{E_\theta} \sigma_\theta - \left(\frac{\nu_{z\theta}}{E_r} + \varphi \frac{\nu_{z\varphi}}{E_r} \right) \sigma_r - \nu_{z\theta} \varphi \varepsilon_z^u \\
\varepsilon_r &= -\left(\frac{\nu_{r\varphi}}{E_\theta} + \varphi \frac{\nu_{r\varphi}}{E_\theta} \right) \sigma_\theta + \frac{1}{E_r} - \varphi \frac{\nu_{r\varphi}}{E_r} \sigma_r - \nu_{r\varphi} \varphi \varepsilon_z^u
\end{align*}
\] (4.73)

Estos términos se mantienen a lo largo de los cálculos de los apartados 4.1.3 4.1.7 y 4.1.8. Para no repetir todas las ecuaciones del cálculo se deja para el capítulo 6, donde se desarrolla el proceso completo, la obtención de las ecuaciones finales.

Con el sistema unificado de cálculo de tensiones mediante la función \(\varphi \) se consiguen varios objetivos. Por orden de importancia son:

1. Unificar el cálculo en un sólo sistema de ecuaciones, donde TP y DAC son dos casos particulares con \(\varphi = 0 \) y \(\varphi = 1 \) respectivamente.

2. Permite entender la naturaleza de la transición entre la zona del extremo libre y la zona uniforme.

3. Describe con bastante exactitud la variación de las tensiones en dicha zona.

4. Permite calcular la resistencia del rotor con la seguridad de que no existe un punto claramente más desfavorable.

4.2.9. Análisis de otros modelos

Finalizado el estudio del comportamiento del rotor se analiza el modelo de Sung Kyu Ha [22] comentado en el apartado 4.1.2. Se ha dejado para el final porque las descripciones realizadas sobre la deformación y la tensión axiales permiten analizarlo con más facilidad.

El modelo de Ha considera que la deformación axial \(\varepsilon_z \) es constante en \(z \), pero varía linealmente con el radio, según la ecuación
Los valores de ε_0 y ε_1 son dos constantes que Ha determina mediante las condiciones de $\Sigma F_z = 0$ y $\Sigma M = 0$, según las siguientes ecuaciones:

$$F_z = \int \sigma_z dA = 0 \quad ; \quad M = \int \sigma_z r dA = 0$$

Este modelo sustituye el cálculo en condiciones de tensión plana utilizado por el resto de autores y mejora los resultados, sobre todo en el cálculo de rotores de longitud axial grande porque introduce la tensión axial. Pero tiene bastantes limitaciones, principalmente de tipo conceptual, que se analizan a continuación.

Aplica la misma distribución de deformaciones ε_z a todas las secciones transversales independientemente de la posición z y, por lo tanto, no tiene en cuenta las variaciones descritas en los apartados anteriores. Esta condición se aproxima más al cálculo en DAC que en TP, o sea a la zona uniforme que la del extremo, pero la función lineal de ε_z propuesta no es válida para ninguna de las dos, tampoco para un punto de la zona de transición.

En la zona del extremo, $z = 0$, no cumple la condición básica de $\sigma_z = 0$, y la ecuación lineal de ε_z de la ecuación 4.74 es muy distinta a la forma curva obtenida en el modelo de TP. En el resultado del ejemplo de la figura 4.10(a) se observa que la forma curva del gráfico de TP difícilmente se puede aproximar a una recta.

En el cálculo de la zona uniforme el término ε_0 de la ecuación 4.74 es coherente con la deformación uniforme, incluso conceptualmente coincide con ε_u calculado en DAC. Pero, el término ε_1 no puede existir físicamente en un punto alejado del extremo. Supondría que el alargamiento axial en el radio exterior es distinto que en interior, lo cual es imposible porque no puede adoptar una forma de tonel en la zona alejada del extremo.

En la zona de transición es más difícil analizar su validez porque, como se ha descrito, en ella no se cumple ninguna condición específica como las otras dos zonas. Aunque se puede objetar que los valores constantes en z de la deformación axial de este modelo contradice la característica principal de la zona que, por ser de transición, la deformación debe variar necesariamente con la posición z.

Además, este modelo tiene otra limitación importante: la condición de suma de momentos para hallar ε_1. La ecuación 4.75 no es propiamente una suma de momentos de las fuerzas axiales en la sección transversal del rotor respecto de un eje diametral, porque en ella la distancia r no es vectorial. De todas formas, si se determinase el momento de toda la sección necesariamente sería nulo porque la tensión tiene simetría axial y, por lo tanto, $\varepsilon_1 = 0$. En cambio calculado con la distancia r se determina el momento de la distribución radial de tensiones que casi nunca será nulo y $\varepsilon_1 \neq 0$.

En resumen, mejora el cálculo en TP pero no es correcto aplicar a todas las posiciones axiales el mismo valor, ni es acertado determinar el coeficiente ε_1 mediante la ecuación de momentos.
Capítulo 5

TENSIONES RESIDUALES EN ESTADOS NO UNIFORMES

5.1. Tensiones de curado a temperatura no uniforme

5.1.1. Curado a temperatura no uniforme

En el cálculo de las tensiones térmicas de los capítulos 3 y 4 se ha considerado que el rotor se cura a temperatura uniforme y durante su utilización se mantiene también a temperatura uniforme. Esto supone que el incremento de temperatura, que genera tensiones residuales, es igual en todos puntos del volante, con un valor único para ΔT del apartado 3.1.2.

Puede darse el caso que este incremento de temperaturas no sea uniforme en el radio. Por ejemplo, si en el curado o durante el uso del rotor la temperatura de la superficie interna del rotor es distinta que la externa.

En este capítulo no se pretende deducir un sistema para resolver todas las posibles formas en el incremento de temperatura de un rotor. A pesar del título genérico del capítulo, el objetivo de este estudio es hallar nuevas formas de curado, mediante temperaturas no uniformes, que mejoren las tensiones residuales del rotor.

El curado a temperatura no uniforme ha sido tratado por algunos autores pero en situaciones distintas a las que aquí se consideran. Por ejemplo, en Lee y Springer (1990) [32] y [33] y en Scott y Beck (1992) [46] se tiene en cuenta la distribución de temperaturas generada por la reacción química exotérmica y el flujo de calor hacia el exterior. En ambos, se considera que la temperatura ambiental constante y la variación de temperaturas en el radio es pequeña, porque el calor generado es muy bajo, y en consecuencia, los efectos sobre las tensiones residuales es despreciable.

Aquí se estudia el caso de un curado realizado bajo un gradiente de temperatura importante, creado de manera artificial manteniendo la superficie interna del rotor a una
temperatura distinta de la externa. Esta diferencia se puede conseguir, por ejemplo, calentando la superficie externa mediante un foco de calor y enfriando con aire fresco la interna, tal como se representa en la figura 5.1.

No se consideran los estados transitorios temporales durante el calentamiento desde la temperatura ambiental ni el enfriamiento después del curado. En el artículo de Lee y Springer (1990) [33] se comprueba que no son importantes para las tensiones finales.

5.1.2. La temperatura en función del radio

La distribución radial de la temperatura en una pared cilíndrica con una temperatura en la superficie externa distinta de la interna no es lineal, como en el caso de una pared plana. La curvatura de la pared crea un gradiente más pronunciado en los radios pequeños porque el área es menor.

En un punto cualquiera situado a un radio r, comprendido entre el radio interno r_i y el externo r_e, la temperatura $T(r)$ es función de la temperaturas extremas, interna T_i y externa T_e.

![Figura 5.1: La diferencia de temperaturas T_i a T_e crea un flujo radial de calor Q un gradiente de temperaturas dT](image)

Para mantener la temperatura de la superficie externa T_e distinta de la interna T_i es necesario un flujo de calor entre ellas, como se muestra en la figura 5.1. Para ello, es necesario aportar el calor Q en la superficie el externa y evacuarlo en la interna. Se supone que las fugas a través de las superficies laterales son nulas y, por lo tanto, el flujo es el mismo en todos los radios, cualquiera que sea la su posición axial.

Para determinar la distribución de temperaturas se considera el cilindro de espesor diferencial dr situado en un radio r, en el cual el incremento diferencial de temperaturas dT es función del flujo de calor Q. Se cumple la ley de transmisión de calor a través de una pared, Incropera y DeWitt (1990) [31], por la que el flujo de calor Q (J/s) es función del coeficiente de conductividad térmica λ (J/m s°C), de la superficie S (m²) y del gradiente de temperatura dT (°C)

$$Q = -\lambda S \frac{dT}{dr}$$

(5.1)
en donde, el signo negativo significa que el sentido del flujo es contrario al gradiente de temperaturas.

Si se considera que el cilindro tiene una longitud unitaria, la superficie S se reduce a $2\pi r$, y el diferencial de temperatura es una función del radio r

$$dT = -\frac{Q}{2\pi\lambda} \frac{dr}{r} \quad (5.2)$$

Integrando esta expresión con respecto del radio r se obtiene una distribución logarítmica de temperaturas

$$T(r) = -\frac{Q}{2\pi\lambda} \ln r + C \quad (5.3)$$

de donde la constante de integración C y el flujo de calor Q se deducen de los valores de temperatura conocidos: en $r = r_i$ es $T = T_i$ y en $r = r_e$ es $T = T_e$.

$$C = T_i + \frac{Q}{2\pi\lambda} \ln r_i \quad ; \quad Q = (T_e - T_i) \frac{2\pi\lambda}{\ln r_1 - \ln r_e} \quad (5.4)$$

Con lo cual, la ecuación de temperatura es

$$T(r) = T_i + (T_e - T_i) \frac{\ln r - \ln r_i}{\ln r_e - \ln r_i} \quad (5.5)$$

Se trata de una función logarítmica del radio, con pendiente más pronunciada en los radios menores porque la superficie es menor. Si el cilindro fuese de pared delgada, en donde el radio exterior r_e es similar al interior r_i, la función se puede aproximar a una recta, pero no es el caso de los rotores para volantes de inercia que siempre son de pared gruesa.

Después de mantener el rotor a las temperaturas constantes T_i y T_e, durante el proceso de curado, se enfria hasta la temperatura ambiente o temperatura final uniforme, T_f. Este incremento $\Delta T(r)$, por el cual se generan las tensiones residuales descritas en el apartado 3.1.1, también es una función del radio. Su valor es la diferencia entre la temperatura final T_f y la función inicial $T(r)$

$$\Delta T(r) = T_f - T(r) = t_0 + t_1 \ln r \quad (5.6)$$

Es también una función logarítmica, en donde se han agrupado los factores constantes

$$t_0 = T_f - T_i + \frac{T_e - T_i}{\ln r_e - \ln r_i} \ln r_i \quad ; \quad t_1 = -\frac{T_e - T_i}{\ln r_e - \ln r_i}$$
El término independiente t_0 es el incremento constante de temperatura y t_1 es el factor de escala de la función logarítmica de $\ln r$.

En la figura 5.2 se muestra un ejemplo del gradiente de temperatura para un rotor de pared muy gruesa, $r_i = 0.1 r_e$. Los valores extremos son $T_i = 60^\circ C$, $T_e = 180^\circ C$ y la temperatura ambiente $T_f = 20^\circ C$. En este caso las constantes de la ecuación valen $t_0 = 180$ y $t_1 = 52.1$.

![Figura 5.2: Ejemplo de gradiente de temperatura de un rotor con $T_e = 160^\circ C$ y $T_i = 60^\circ C$.](figura)

5.1.3. Desplazamiento radial

A continuación se calcula el desplazamiento y las tensiones residuales de un rotor curado a temperatura no uniforme. El cálculo se realiza únicamente con el sistema de tensión plana. De momento no aplica el unificado deducido en el capítulo anterior, porque sólo se pretende mostrar las diferencias respecto de los resultados a temperatura uniforme del capítulo 3. En el capítulo 6, sobre formulación general, se utilizarán los términos deducidos aquí en tensión plana para el sistema unificado y se deducirá la solución global. Por otra parte, se considera que las fibras están orientadas a 0°.

El cálculo de deformaciones y tensiones residuales es muy parecido al cálculo térmico del capítulo 3. El incremento constante de temperatura ΔT de la ecuación 3.2 se sustituye aquí por la función de la ecuación 5.6.

Las tensiones de la ecuación 3.4 son iguales pero con un incremento de temperatura ΔT logarítmica. Sustituyendo estas tensiones y la derivada de σ_r en la ecuación de equilibrio de fuerzas 3.5 se obtiene la ecuación de desplazamiento, muy parecida a la ecuación 3.6 pero con un nuevo término logarítmico

\[
u_{,rr} + \frac{1}{r} u_{,r} - \frac{a^2}{r^2} u = \frac{e_1}{r} + e_2 \frac{\ln r}{r} \tag{5.7}
\]
Las constantes e_1 y e_2 son función de la ecuación de temperatura 5.5 y las propiedades del material

$$e_1 = [(\nu r^2 - a^2)t_0 + \nu r^2 t_1] \alpha_\theta + [(1 - \nu r^2)t_0 + t_1] \alpha_r$$

$$e_2 = [(\nu r^2 - a^2) \alpha_\theta + (1 - \nu r^2) \alpha_r] t_1$$

La ecuación desplazamiento en función del radio, $u(r)$, se obtiene mediante el mismo proceso de integración que el capítulo 3 pero con el factor $r^{-1} \ln r$. La ecuación 3.8 queda

$$x, r + (1 - 2a)r^{(1 - a)} + (1 + 2a)r^{(-1 + a)}$$

La integral I_e se resuelve por partes

$$m = \ln r$$

$$dm = \frac{1}{r} dr$$

$$dn = (r^{-a} + r^a) dr$$

$$n = \frac{r^{1 - a}}{1 - a} + \frac{r^{1 + a}}{1 + a}$$

$$I_e = \int \ln r (r^{-a} + r^a) dr = \left(\frac{r^{1 - a}}{1 - a} + \frac{r^{1 + a}}{1 + a}\right) \ln r - \int \left(\frac{r^{1 - a}}{1 - a} + \frac{r^{1 + a}}{1 + a}\right) \frac{1}{r} dr$$

Luego, en la ecuación general 3.12 se le suma una tercera integral denominada I_4 y queda

$$y = A' \int \frac{r^{2a - 1}}{(1 + r^{2a})^2} dr + e_1 \int \frac{r^{2a - 1}}{(1 + r^{2a})^2} \left(\frac{r^{1 - a}}{1 - a} + \frac{r^{1 + a}}{1 + a}\right) dr$$

$$+ e_2 \left\{ \int \frac{r^{(2a - 1)}}{(1 + r^{2a})} \left[\left(\frac{r^{1 - a}}{1 - a} + \frac{r^{1 + a}}{1 + a}\right) \ln r - \frac{r^{1 - a}}{(1-a)^2} + \frac{r^{1 + a}}{(1+a)^2}\right] dr \right\}$$

$$I_4$$
Dicha integral se resuelve también por partes, en la cual \(m \) coincide con la integral \(I_e \) anterior

\[
\begin{align*}
\left\{ \begin{array}{l}
 m = \left(\frac{r^{1-a} + r^{1+a}}{1-a} \right) \ln r - \frac{r^{1-a}}{(1-a)^2} + \frac{r^{1+a}}{(1+a)^2} \\
 \frac{dn}{(1+r^{2a})^2} dr = \frac{n}{(1+r^{2a})^2} dr
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\int \frac{1-r^{2a}}{r^a} dr = & \frac{-1}{2a(1+r^{2a})} \left[\left(\frac{r^{1-a} + r^{1+a}}{1-a} \right) \ln r - \frac{r^{1-a}}{(1-a)^2} + \frac{r^{1+a}}{(1+a)^2} \right] \\
& - \int \frac{1-r^{2a}}{r^a} dr
\end{align*}
\]

(5.13)

en donde, la nueva integral \(I_f \) también se resuelve por partes

\[
\begin{align*}
 m = \ln r \quad dm = \frac{1}{r} dr \quad ; \quad dn = r^{-a} dr \quad n = \frac{r^{1-a}}{1-a}
\end{align*}
\]

\[
\begin{align*}
I_f = \frac{1}{2a} \int \ln r \ r^{-a} dr &= \frac{1}{2a} \left(\frac{r^{1-a}}{1-a} \ln r - \int \frac{r^{1-a}}{1-a} \frac{1}{r} dr \right) \\
&= \frac{1}{2a} \frac{r^{1-a}}{1-a} \ln r + \frac{1}{2a} \frac{r^{1-a}}{(1-a)^2}
\end{align*}
\]

(5.14)

El resultado de la integral \(I_4 \), después de simplificar y agrupar términos, es

\[
\begin{align*}
I_4 = \frac{1}{1-a^2} \frac{r^{1+a}}{1+r^{2a}} \ln r + \frac{1}{2a(1+r^{2a})} \left(\frac{r^{1-a}}{1-a} + \frac{r^{1+a}}{1+a} \right) - \frac{1}{2a} \frac{r^{1-a}}{(1-a)^2}
\end{align*}
\]

(5.15)

y la variable \(y \), de la ecuación 5.12, es

\[
\begin{align*}
y = A' - \frac{1}{2a(1+r^{2a})} + \frac{e_1}{1-a^2} \frac{r^{1+a}}{1+r^{2a}} + \frac{e_2}{1-a^2} \frac{r^{1+a}}{1+r^{2a}} \ln r \\
&+ \frac{e_2}{1-a^2} \frac{r^{1+a}}{1+r^{2a}} \left(\frac{r^{1-a}}{1-a} + \frac{r^{1+a}}{1+a} \right) + \frac{e_2}{2a(1-a^2)} \frac{r^{1-a}}{1+a} + B'
\end{align*}
\]

(5.16)

Finalmente, sustituyendo esta variable intermedia en la ecuación 2.14 se obtiene la ecuación desplazamiento \(u(r) \), en la que se agrupan los términos en funciones de la variable \(r \).
5.1. TENSIONES DE CURADO A TEMPERATURA NO UNIFORME

\[u(r) = \frac{1}{r^a} A + r^a B + \left(\frac{e_1}{1-a^2} - \frac{2e_2}{(1-a^2)^2} \right) r + \frac{e_2}{1-a^2} r \ln r \]

(5.17)

Esta solución es muy similar a la temperatura uniforme, de la ecuación 3.14, pero con el coeficiente del término en \(r \) ampliado y un término logarítmico nuevo.

5.1.4. Tensiones

Las tensiones residuales originadas por el incremento logarítmico de temperatura se obtienen de las mismas ecuaciones 3.4, a las que se aplica la nueva ecuación de desplazamiento 5.17, su derivada y la función \(\Delta T(r) \) de la ecuación 5.5

\[\sigma_\theta(r) = a^2 c_r \left\{ (1-a \nu_\theta r) \frac{1}{r^{a+1}} A + (1+a \nu_\theta r) r^{a-1} B + (1+\nu_\theta r) \left[\frac{e_1}{1-a^2} - \frac{2e_2}{(1-a^2)^2} \right] r + v_\theta \frac{e_2}{1-a^2} - (\alpha_\theta + \nu_\theta \alpha_r) t_0 + \left[(1+\nu_\theta r) \frac{e_2}{1-a^2} - (\alpha_\theta + \nu_\theta \alpha_r) t_1 \right] \ln r \right\} \]

\[\sigma_r(r) = c_r \left\{ (\nu_r \theta - a) \frac{1}{r^{a+1}} A + (\nu_r \theta + a) r^{a-1} B + (\nu_r \theta + 1) \left[\frac{e_1}{1-a^2} - \frac{2e_2}{(1-a^2)^2} \right] r + \frac{e_2}{1-a^2} - (\nu_r \theta \alpha_\theta + \alpha_r) t_0 + \left[(\nu_r \theta + 1) \frac{e_2}{1-a^2} - (\nu_r \theta \alpha_\theta + \alpha_r) t_1 \right] \ln r \right\} \]

(5.18)

Se comprueba que si la temperatura de curado es uniforme, o sea \(T_i = T_e = T \), los resultados de la ecuación 5.18 coinciden con los de la ecuación 3.15.

Las constantes \(A \) y \(B \) de las condiciones de contorno en el caso particular de un rotor de material único son

\[A = -T_o \left(\frac{r_2^{a-1} - r_1^{a-1}}{r_2^{a+1} - r_1^{a+1}} \right) + T_i \left(\ln r_1 r_2^{a-1} - \ln r_2 r_1^{a-1} \right) \]

\[B = -T_o \left(\frac{1}{r_2^{a-1}} - \frac{1}{r_1^{a-1}} \right) + T_i \left(\ln r_1 \frac{r_2^{a+1}}{r_2^{a+1}} - \ln r_2 \frac{r_1^{a+1}}{r_1^{a+1}} \right) \]

(5.19)

en donde se han agrupado algunos factores en los parámetros \(T_o \) y \(T_i \) siguientes
\[T_o = (\nu_r + 1) \left(\frac{e_1}{1-a^2} - \frac{2e_2}{(1-a^2)^2} \right) + \frac{e_2}{1-a^2} - (\nu_r \alpha_\theta + \alpha_r) t_0 \]

\[T_1 = (\nu_r + 1) \frac{e_2}{1-a^2} - (\nu_r \alpha_\theta + \alpha_r) t_1 \] (5.20)

5.1.5. Punto singular

Esta solución, igual que en el apartado 3.1.6, no es válida para el valor \(a = 1 \) y es necesario obtener la solución particular para este punto. En este caso las constantes \(e_1 \) y \(e_2 \) son

\[e_1 = [(\nu - 1)t_0 + \nu t_1] \alpha_\theta + [(1-\nu)t_0 + t_1] \alpha_r \]

\[e_2 = (\nu - 1)(\alpha_\theta - \alpha_r) t_1 \] (5.21)

Esta singularidad modifica simultáneamente las integrales \(I_d \) y \(I_e \) de la ecuación 5.10.

\[\int f(r) \ e^{g(r)} \ dr = e_1 \int (r^{-1} + r) \ dr + e_2 \int \ln r \ (r^{-1} + r) \ dr \]

(5.22)

La primera está resuelta por \(I_{d1} \) de la ecuación 3.18 y la segunda, que se denomina \(I_{e1} \), se resuelve por partes

\[
\begin{align*}
 m &= \ln r \\
 dm &= \frac{1}{r} \ dr \\
 dn &= (r^{-1} + r) \ dr \\
 n &= \ln r + \frac{r^2}{2}
\end{align*}
\]

\[I_{e1} = e_2 \int \ln r \ (r^{-1} + r) \ dr = e_2 \left(\ln r + \frac{r^2}{2} \right) \ln r - \int \left(\ln r + \frac{r^2}{2} \right) \frac{1}{r} \ dr \]

\[= e_2 \left(\frac{1}{2} \ln^2 r + \frac{r^2}{2} \ln r - \frac{r^2}{4} \right) \] (5.23)

Sustituyendo ambas en la ecuación 5.22 se obtiene la solución de variable intermedia \(x \) 2.17 y su integral \(y \), según la ecuación 2.25. En ella distinguen tres integrales.
5.1. TENSIONES DE CURADO A TEMPERATURA NO UNIFORME

\[
y = E' \int \frac{r}{(1 + r^2)^2} \, dr + e_1 \int \frac{r}{(1 + r^2)^2} \left(\ln r + \frac{r^2}{2} \right) \, dr \\
+ e_2 \int \frac{r}{(1 + r^2)^2} \left[\frac{1}{2} \ln^2 r - \frac{r^2}{2} \ln r + \frac{r^2}{4} \right] \, dr
\]

(5.24)

La primera es un caso particular del primer sumando de la ecuación 5.16, la segunda, \(I_{31} \), está resuelta en la ecuación 3.19 y la tercera es un caso particular de \(I_4 \), denominada \(I_{41} \), que se soluciona de forma semejante

\[
\begin{align*}
 m &= \frac{1}{2} \ln^2 r + \frac{r^2}{2} \ln r - \frac{r^2}{4} \\
 dm &= \ln r \left(r^{-1} + r \right) \, dr = \ln r \frac{1 + r^2}{2} \, dr \\
 dn &= \frac{r}{(1 + r^2)^2} \, dr \\
 n &= -\frac{1}{2(1 + r^2)}
\end{align*}
\]

\[
I_{41} = \frac{-1}{2(1 + r^2)} \left(\frac{1}{2} \ln^2 r + \frac{r^2}{2} \ln r - \frac{r^2}{4} \right) - \int \frac{-1}{2} \ln r \frac{dr}{r}
\]

(5.25)

Sustituyendo estas integrales en la ecuación 5.24 y aplicando la ecuación 2.14 se obtiene el desplazamiento \(u(r) \) para \(a = 1 \), que sustituye a la ecuación 5.17

\[
u(r) = \frac{1}{r} A + r B + \left(-\frac{e_1}{4} + \frac{e_2}{8} \right) r + \left(\frac{e_1}{2} - \frac{e_2}{4} \right) r \ln r + \frac{e_2}{4} r \ln^2 r
\]

(5.26)

También se obtienen las tensiones
\[\sigma_{\theta}(r) = c_r \left\{ (1 - \nu) \frac{1}{r^2} A + (1 + \nu) B - (1 + \nu) \left(\frac{e_1}{4} - \frac{e_2}{8} \right) - \nu \left(\frac{e_1}{2} - \frac{e_2}{4} \right) \right. \\
- (\alpha_\theta + \nu \alpha_r) t_0 + \left[(1 + \nu) \left(\frac{e_1}{2} - \frac{e_2}{4} \right) + \nu \frac{e_2}{4} - (\alpha_\theta + \nu \alpha_r) t_1 \right] \ln r \\
+ (1 + \nu) \frac{e_1}{4} \ln^2 r \} \]

\[\sigma_r(r) = c_r \left\{ (\nu - 1) \frac{1}{r^2} A + (\nu + 1) B - (\nu + 1) \left(\frac{e_1}{4} - \frac{e_2}{8} \right) + \left(\frac{e_1}{2} - \frac{e_2}{4} \right) \right. \\
- (\nu \alpha_\theta + \alpha_r) t_0 + \left[(\nu + 1) \left(\frac{e_1}{2} - \frac{e_2}{4} \right) + \frac{e_2}{4} - (\nu \alpha_\theta + \alpha_r) t_1 \right] \ln r \\
+ (\nu + 1) \frac{e_1}{4} \ln^2 r \} \]

Si se aplican a un rotor simple se deducen las constantes como

\[A = - T_o \left(\ln r_1 - \ln r_2 \right) + T_{ll} \left(\ln^2 r_1 - \ln^2 r_2 \right) \\
\frac{(\nu - 1) \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right)}{(\nu + 1) \left(\frac{1}{r_2^2} - \frac{1}{r_1^2} \right)} \]

\[B = - T_o \left(\frac{1}{r_2^2} - \frac{1}{r_1^2} \right) + T_l \left(\frac{\ln r_1}{r_2^2} - \frac{\ln r_2}{r_1^2} \right) + T_{ll} \left(\frac{\ln^2 r_1}{r_2^2} - \frac{\ln^2 r_2}{r_1^2} \right) \]

en donde se agrupan los términos de la ecuación de \(\sigma_r(r) \) \(T_o \), \(T_l \) y \(T_{ll} \) que se definen como

\[T_o = - (\nu + 1) \left(\frac{e_1}{4} - \frac{e_2}{8} \right) + \left(\frac{e_1}{2} - \frac{e_2}{4} \right) - (\nu \alpha_\theta + \alpha_r) t_0 \]

\[T_l = (\nu + 1) \left(\frac{e_1}{4} - \frac{e_2}{8} \right) + \frac{e_2}{2} - (\nu \alpha_\theta + \alpha_r) t_1 \]

\[T_{ll} = (\nu + 1) \frac{e_2}{4} \]

Si además de \(a = 1 \), que equivale a \(E_\theta = E_r \), el material es totalmente isótropo en todas las propiedades elásticas y térmicas, con \(\nu_\theta = \nu_r = \nu \) y \(\alpha_\theta = \alpha_r = \alpha \), los factores y las tensiones se simplifican

\[e_1 = (1 + \nu) t_1 \alpha \quad ; \quad e_2 = 0 \]
5.1. TENSIONES DE CURADO A TEMPERATURA NO UNIFORME

\[u(r) = \frac{1}{r^\alpha} A + r^\alpha B - \frac{(1 + \nu)t_1}{4} r + \frac{(1 + \nu)t_1}{2} r \ln r \]

\[\sigma_\theta(r) = c_r \left[(1 - \nu) \frac{1}{r^2} A + (1 + \nu)B - (1 + \nu) \alpha t_0 + (\nu^2 - 1) \frac{\alpha t_1}{4} (\nu^2 - 1) + \frac{\alpha t_1}{2} \ln r \right] \]

\[\sigma_r(r) = c_r \left[(\nu - 1) \frac{1}{r^2} A + (\nu + 1)B - (1 + \nu) \alpha t_0 - (\nu^2 - 1) \frac{\alpha t_1}{4} + (\nu^2 - 1) \frac{\alpha t_1}{2} \ln r \right] \]

Se comprueba que para el caso de un rotor de material único el término constante del incremento de temperatura, \(t_0 \), no contribuye a las tensiones. Para ello se hallan las constantes \(A \) y \(B \) y se sustituyen en las ecuaciones anteriores.

\[\sigma_\theta(r) = \left(-\ln r_i - \ln r_e - \frac{1}{r^2} - \frac{1}{2} + \frac{r_e^2 \ln r_i - r_i^2 \ln r_e}{r_e^2 - r_i^2} - \ln r \right) \frac{E \alpha t_1}{2} \]

\[\sigma_r(r) = \left(\ln r_i - \ln r_e - \frac{1}{r^2} + \frac{r_e^2 \ln r_i - r_i^2 \ln r_e}{r_e^2 - r_i^2} - \ln r \right) \frac{E \alpha t_1}{2} \]

en las cuales el parámetro \(E \) es el módulo elástico del material isotrópico.

5.1.6. Ejemplo

Si al rotor del ejemplo del apartado 3.1.7 se cambia la temperatura uniforme del curado por un gradiente de temperatura las tensiones residuales disminuyen. La superficie exterior se somete a una temperatura de 180°C y la interior a 120°C y después del curado se enfria a una temperatura uniforme de 20°C. El desplazamiento radial y las tensiones, tangencial y radial residuales después del curado se presentan en la figura 5.3.

Comparando estos resultados con los del curado a temperatura uniforme a 120°C de la figura 3.3 se observa que la contracción radial es mayor. En el uniforme los desplazamientos interno y externo eran de −0,15/ − 0,55 y ahora aumentan hasta −0,20/ − 0,80 mm, lo cual es lógico porque el incremento medio de temperatura es mayor. En cambio, las tensiones residuales disminuyen, la tangencial pasa de 14/ − 10 a 6,5/7,0 MPa y el valor máximo de la radial cambia de 1,5 a 0,85 MPa.

Es muy interesante comprobar que a pesar de haber aumentado el incremento medio de la temperatura las tensiones residuales generadas son menores. La zona externa del rotor tiende a contraerse más que la interna y genera una ligera tensión radial de compresión que compensa la tensión propia del enfriamiento.

La reducción de las tensiones residuales a pesar de ser importante, en este ejemplo alcanza el 50 %, es poco significativa dentro de las tensiones totales porque se suman a las tensiones de la fuerza centrífuga. Para este mismo rotor las tensiones tangenciales
Figura 5.3: Desplazamiento radial y tensiones térmicas generadas por un curado a temperatura no uniforme

y radiales de la figura 2.6 en el apartado 2.2.7 son del orden de 400 MPa y 30 MPa respectivamente, lo que supone una disminución de sólo el 2%.

5.2. Tensiones en estados transitorios de hidratación

5.2.1. Absorción de humedad en un rotor

En el capítulo 3 de tensiones residuales se han determinado las tensiones debidas a la hidratación para una concentración de humedad constante, pero, igual que las tensiones térmicas, en la práctica pueden darse estados de humedad no uniforme. A diferencia del térmico, esta situación se da siempre en los rotores porque la resina se hidrata mediante un proceso gradual de absorción de humedad, tal como se ha comentado en el apartado 3.2.1. La duración de este proceso es distinto según el espesor de la pared, en una pared fina se completa en poco tiempo, pero si el espesor es grande y dura cierto tiempo, se crean estados transitorios que deben tenerse en cuenta para el cálculo de tensiones.

El grado de humedad de la resina después del curado es muy bajo y absorbe lentamente la humedad contenida en el ambiente. Las zonas próximas al exterior, en contacto directo con el aire, absorben fácilmente la humedad y quedan saturadas en poco tiempo, pero las interiores se hidratan lentamente a través de un proceso de difusión, que se describe en Springer y Tsai (1981) [47]. Si el espesor de pared es de pocos milímetros el proceso se completa en pocos meses pero en espesor grande puede durar años, o incluso no llega a completarse nunca.
Los rotores para volantes de inercia suelen tener un espesor de pared grande, y es frecuente que la hidratación se prolongue a largo de toda su vida. En estos casos, la humedad tiene una distribución radial no uniforme que irá cambiando progresivamente con el tiempo y genera tensiones también variables.

5.2.2. Proceso de absorción de humedad

Para la determinación del proceso de absorción de la humedad en un material compuesto se sigue el sistema presentado por Springer y Tsai (1981) [47]. En él se determina el contenido de la humedad en los puntos interiores de una pared plana inmersa en un ambiente húmedo. El valor depende de la distancia \(x \) perpendicular a la superficie y del tiempo \(t \).

La hidratación depende de la humedad máxima y del coeficiente de difusión, que a su vez depende de la temperatura, del tipo de resina y de la orientación de las fibras.

Según este autor el incremento de humedad \(\Delta c \) en un punto \(x \) sigue una ley del tipo

\[
\Delta c = (c_m - c_i) \left\{ 1 - \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{1}{2j + 1} \sin \left(\frac{(2j + 1) \pi x}{h}\right) \exp \left(-\frac{(2j + 1)^2 \pi^2 D t}{h^2} \right) \right\}
\]

(5.32)

en donde \(c_m \) es la humedad máxima y \(c_i \) la humedad inicial en %, \(h \) el espesor de la pared en mm, \(t \) el tiempo en s y \(D \) el coeficiente de difusión en la dirección perpendicular a la superficie externa en mm/s². A su vez la difusión depende de la temperatura \(T \) en °K y de dos constantes del material, \(D_o \) y \(C \).

\[
D = D_o \cdot \exp(-C/T)
\]

(5.33)

Para ilustrar esta función en la figura 5.4 se presenta el resultado de un ejemplo en el que se aplica una resina de difusión rápida. Se trata de placa plana de 100 mm de espesor, de fibra de carbono y resina epoxi, T3000/976, con una humedad máxima del 0.6 % y 40°C de temperatura. Para este material los parámetros, según Spriger, son: \(D_o = 0.023 \) mm² s⁻¹ y \(C = 300°K \). En la figura se representa el grado de humedad en función de la posición \(x \) y el tiempo, desde 1 hasta 40 años.

La humedad es simétrica porque la difusión se realiza en ambos superfi cies laterales. Se comprueba que necesita mucho tiempo para llegar hasta el centro de la placa y saturarse completamente, a pesar de estar a una temperatura relativamente elevada de 40°C.

5.2.3. Distribución aproximada de la humedad

Para el cálculo de la resistencia de un rotor no es necesario conocer el proceso de absorción de humedad. Como se ha descrito en el capítulo 3 las tensiones que genera son mucho
menos importantes que las centrífugas, e incluso menores que las térmicas. Además, si el rotor no llega a la saturación total durante el tiempo vida, las tensiones son inferiores a las calculadas en el capítulo 3. Por lo cual, en este trabajo no es necesario tener mucha precisión en los valores de la distribución de la humedad en el estado transitorio.

Para poder aplicar la ley de distribución de la ecuación 5.32 a un rotor se realizan algunas hipótesis simplificativas. Se considera que la humedad entra por las superficies del radio exterior e interior, y no se considera la humedad que penetra por las caras laterales, lo que supone una fuerte limitación para los rotores de corta longitud axial. Se desprecia también el efecto de la curvatura, de forma que se aproxima a una pared plana.

La expresión matemática de la ecuación 5.32 se simplifica para adaptarla a la estructura de las ecuaciones de los capítulos anteriores como se verá en el capítulo 6 de formulación general. Los términos sinusoidales se sustituyen por una función polinómica en r para que los términos del mismo tipo que en el resto de cargas. Se limita a un polinómio de cuarto grado porque el número de términos de las ecuaciones generales no es excesivamente grande y la precisión en los resultados sea suficiente. Este se adapta bien al perfil de la función, excepto durante el tiempo inicial en los puntos próximos a la superficie exterior y su influencia sobre las tensiones finales es mínima.

La función polinómica del incremento de humedad Δc en función del radio r es del tipo

$$\Delta c = c_0 + c_1 r + c_2 r^2 + c_3 r^3 + c_4 r^4$$

en la cual los coeficientes c_i se determinan a partir valores de Δc_i de la ecuación 5.32 tomados en cinco puntos r_i representativos. Estos se calculan mediante el sistema

$$\{ \Delta c_i \} = \begin{bmatrix} 1 & r_i & r_i^2 & r_i^3 & r_i^4 \end{bmatrix} \{ c_i \}$$

Figura 5.4: Aumento de la humedad en el interior de una pared plana de 100 mm en sucesivos años de vida, según Springer (1981) [47]
La ecuación 5.32 considera que la humedad entra por las dos caras pero algunas veces el rotor tiene la superficie interna impermeable a la humedad, por ejemplo si incorpora un mandrino metálico. En este caso la humedad entra solamente por la superficie externa, generando una distribución asimétrica y la humedad es máxima en el radio exterior y mínima en el interior. Su distribución coincide con la mitad del gráfico simétrico de la figura 5.4, porque la simetría supone que no existe flujo de humedad por la superficie central. La ecuación es idéntica pero reemplazando el radio medio de la distribución por el radio interior del rotor.

En la figura 5.5 se muestran las dos funciones, la simétrica (a) para un rotor con entrada de humedad por el radio exterior el interior y la asimétrica (b) para un rotor con mandrino. En ella se comprueba la bondad del ajuste de la ecuación 5.34 y se aplica un rotor con misma geometría que en los ejemplos anteriores: \(r_i = 0.3 \) y \(r_e = 0.5 \) m. Se utiliza un material del tipo T3000/976 y se somete a una humedad máxima de 0.6 % y una temperatura de 40ºC durante 20 años. En la figura 5.5, junto con los valores de la función polinómica, se representan los valores originales de la ley de Springer para comparar ambas funciones.

De los valores de la figura 5.5 se deduce que el ajuste es bueno, las diferencias son inapreciables en el rotor sin mandrino (a) y muy pequeñas en el rotor con mandrino (b). La equivalencia es totalmente aceptable para la condición de ajuste aproximado que se expuso anteriormente.

Para periodos de tiempo pequeños la ecuación de Springer sigue teniendo el valor máximo en el extremo pero decrece rápidamente con la distancia al extremo y se hace nula en pocos milímetros, como se muestra en la figura 5.6. Si el periodo es muy breve y la pendiente de la ecuación de Springer muy pronunciada la función polinómica en \(r \) de
la ecuación 5.34 no puede reproducirla porque el polinómio de cuarto grado tiene una pendiente máxima limitada. Para compensar esta diferencia se asigna un valor máximo en el extremo menor que el real, de forma que la nueva trayectoria se adapta mejor a la ecuación de Springer.

En la figura 5.6 se presentan los resultados del ejemplo anterior pero para un tiempo de 1 año. En los extremos se aprecia que la ecuación de Springer decrece rápidamente y la función polinómica sigue una trayectoria media. Con ello se consigue que el área inferior sea la misma y las tensiones residuales generadas sean similares.

![Figura 5.6: Ajuste especial de la función polinómica a la ley de Springer para tiempos breves en rotor sin y con mandrino.](image)

En los ejemplos del final del capítulo, en la sección 5.2.7, se comprueba que las tensiones en tiempos muy breves no son importantes porque las tensiones residuales de hidratación son favorables a la resistencia del rotor. Por lo cual, se estima que ésta aproximación es suficiente para el cálculo global del rotor.

5.2.4. Desplazamiento radial

Igual que el caso de la temperatura no uniforme después de deducir la ley de distribución se determina el desplazamiento radial y las tensiones mediante el proceso del capítulo 3. Ahora el incremento de humedad constante se sustituye por la función radial de la ecuación 5.34. Igual que el caso térmico anterior se aplica únicamente el sistema de tensión plana y fibras orientadas a 0°.

De la ecuación del material 3.38 se deduce la función desplazamiento, parecida a la ecuación 3.40 pero con nuevos sumandos en el segundo término, agrupados en función de r.

CAPÍTULO 5. TENSIONES RESIDUALES EN ESTADOS NO UNIFORMES
5.2. TENSIONES EN ESTADOS TRANSITORIOS DE HIDRATACIÓN

\[u_{rr} + \frac{1}{r} u_r - \frac{a^2}{r^2} u = \frac{1}{r} g_0 + g_1 + g_2 \, r + g_3 \, r^2 + g_4 \, r^3 \]

(5.36)

en donde, las constantes están generadas por los factores del polinomio \(\Delta c \) y son

\begin{align*}
 g_0 &= \left[(\nu \xi - a^2) \beta_r + (1 - \nu \xi) \beta_r \right] c_0 \\
 g_1 &= \left[(2\nu \xi - a^2) \beta_r + (2 - \nu \xi) \beta_r \right] c_1 \\
 g_2 &= \left[(3\nu \xi - a^2) \beta_r + (3 - \nu \xi) \beta_r \right] c_2 \\
 g_3 &= \left[(4\nu \xi - a^2) \beta_r + (4 - \nu \xi) \beta_r \right] c_3 \\
 g_4 &= \left[(5\nu \xi - a^2) \beta_r + (5 - \nu \xi) \beta_r \right] c_4
\end{align*}

(5.37)

Para resolver la ecuación del desplazamiento se utilizan los mismos cambios que en el apartado 2.2.4 y la función \(f(r) \) tienen múltiples sumandos

\[f(r) = (g_0 \frac{1}{r} + g_1 + g_2 \, r + g_3 \, r^2 + g_4 \, r^3) \frac{r^a}{1 + r^{2a}} \]

(5.38)

Cada uno de ellos, al resolver la integral de la ecuación 2.23, da lugar a una integral distinta

\[\int f(r) e^{g(r)} \, dr \, dr = g_0 \int (r^{-a} + r^a) \, dr + g_1 \int (r^{1-a} + r^{1+a}) \, dr + g_2 \int (r^{2-a} + r^{2+a}) \, dr \\
+ g_3 \int (r^{3-a} + r^{3+a}) \, dr + g_4 \int (r^{4-a} + r^{4+a}) \, dr \]

(5.39)

Las integrales \(I_c \) y \(I_d \) estaban definidas en los capítulos 2 y 3 respectivamente y, por lo tanto, están resueltos los factores que de ellas se derivan. Las restantes, \(I_g \), \(I_h \) y \(I_k \) son similares a las anteriores pero con exponentes distintos y su resolución es la misma

\begin{align*}
 I_g &= \int r^{1-a} (1 + r^{2a}) \, dr = \frac{r^{2-a}}{2 - a} + \frac{r^{2+a}}{2 + a} \\
 I_h &= \int r^{3-a} (1 + r^{2a}) \, dr = \frac{r^{4-a}}{4 - a} + \frac{r^{4+a}}{4 + a} \\
 I_k &= \int r^{4-a} (1 + r^{2a}) \, dr = \frac{r^{5-a}}{5 - a} + \frac{r^{5+a}}{5 + a}
\end{align*}

(5.40)
Al sustituir estos resultados en la ecuación 2.25 para la determinación de la variable \(y \) algunos sumandos tienen integrales conocidas, \(I_1, I_2 \) y \(I_3 \), y las nuevas se denominadas \(I_5, I_6 \) y \(I_7 \)

\[
y = A'I_1 + g_0 I_3 + g_1 \int \frac{r^{2a-1}}{(1 + r^{2a})^2} \left(\frac{r^{2-a}}{2-a} + \frac{r^{2+a}}{2+a} \right) \, dr + g_2 \left. I_2 \right|_5 + g_3 \left. \int \frac{r^{2a-1}}{(1 + r^{2a})^2} \left(\frac{r^{4-a}}{4-a} + \frac{r^{4+a}}{4+a} \right) \, dr \right|_6 + g_4 \left. \int \frac{r^{2a-1}}{(1 + r^{2a})^2} \left(\frac{r^{5-a}}{5-a} + \frac{r^{5+a}}{5+a} \right) \, dr \right|_7
\]

(5.41)

La integral \(I_5 \) se resuelve por partes

\[
\begin{align*}
 m &= \frac{r^{2-a}}{2-a} + \frac{r^{2+a}}{2+a} \\
 dm &= r^{1-a} (1 + r^{2a}) \, dr \\
 dn &= \frac{r^{2a-1}}{(1 + r^{2a})^2} \, dr \\
 n &= -\frac{1}{2a(1 + r^{2a})}
\end{align*}
\]

\[
I_5 = -\frac{1}{2a(1 + r^{2a})} \left(\frac{r^{2-a}}{2-a} + \frac{r^{2+a}}{2+a} \right) - \int \frac{1}{2a} r^{1-a} \, dr = \frac{r^{2+a}}{(4 - a^2)(1 + r^{2a})}
\]

(5.42)

y las \(I_6 \) y \(I_7 \) son idénticas pero con exponentes distintos

\[
I_6 = \frac{r^{4+a}}{(16 - a^2)(1 + r^{2a})}
\]

(5.43)

\[
I_7 = \frac{r^{5+a}}{(25 - a^2)(1 + r^{2a})}
\]

(5.44)

Finalmente, deshaciendo el cambio de la ecuación 2.14 se obtiene el desplazamiento

\[
u(r) = \frac{1}{r^a} A + r^a B + \frac{g_0}{1 - a^2} r + \frac{g_1}{4 - a^2} r^2 + \frac{g_2}{9 - a^2} r^3 + \frac{g_3}{16 - a^2} r^4 + \frac{g_4}{25 - a^2} r^5
\]

(5.45)

Se observa que los términos que contienen los factores \(g \) siguen una progresión regular y sería fácil los factores de las potencias sucesivas a partir de un polinomio de \(c \) en la ecuación 5.32 de grado mayor. Pero se estima que no es necesario para el cálculo final del rotor, como se ha comentado al inicio de esta sección.
5.2.5. Tensiones

Las tensiones residuales originadas se obtienen, igual que en el capítulo 3, sustituyendo la ecuación del desplazamiento en las ecuaciones de las tensiones. Las ecuaciones resultantes, como en la ecuación del desplazamiento, tienen en número elevado de factores.

\[
\sigma_b(r) = a^2 c_r \left[(1 - a \nu_\theta) \frac{1}{r^{a+1}} A + (1 + a \nu_\theta) r^{a-1} B + (\nu_\theta \nu_\rho - 1) \frac{c_0}{1 - a^2} \right] \\
+ (\nu_\theta \nu_\rho - 1)(2\beta_\theta - \beta_r) \frac{2 c_1}{4 - a^2} r + (\nu_\theta \nu_\rho - 1)(3\beta_\theta - \beta_r) \frac{3 c_2}{9 - a^2} r^2 \\
+ (\nu_\theta \nu_\rho - 1)(4\beta_\theta - \beta_r) \frac{4 c_3}{16 - a^2} r^3 + (\nu_\theta \nu_\rho - 1)(5\beta_\theta - \beta_r) \frac{5 c_4}{25 - a^2} r^4
\]

\[
\sigma_r(r) = c_r \left[(\nu_\rho - a) \frac{1}{r^{a+1}} A + (\nu_\rho + a) r^{a-1} B + (\nu_\rho^2 - a^2) (\beta_\theta - \beta_r) \frac{c_0}{1 - a^2} \right] \\
+ (\nu_\rho^2 - a^2) (2\beta_\theta - \beta_r) \frac{c_1}{4 - a^2} r + (\nu_\rho^2 - a^2) (3\beta_\theta - \beta_r) \frac{c_2}{9 - a^2} r^2 \\
+ (\nu_\rho^2 - a^2) (4\beta_\theta - \beta_r) \frac{c_3}{16 - a^2} r^3 + (\nu_\rho^2 - a^2) (5\beta_\theta - \beta_r) \frac{c_4}{25 - a^2} r^4
\]

Las constantes de contorno, \(A \) y \(B \), para el caso de un rotor de material único son

\[
A = \frac{1}{(\nu_\rho - a) \left(\frac{r_{a-1}^{\rho} e}{r_{a+1}^{\rho} e} - \frac{r_{a-1}^{\rho} i}{r_{a+1}^{\rho} i} \right)} \left[R_{c0}(r_{e}^{a-1} - r_{i}^{a-1}) + R_{c1}(r_{e}^{a-1} r_{e}^{a-1} - r_{e} r_{i}^{a-1}) + R_{c2}(r_{e}^{a-1} - r_{e}^{a-1}) + R_{c3}(r_{i}^{a-1} - r_{i}^{a-1}) \right]
\]

\[
B = \frac{1}{(\nu_\rho - a) \left(\frac{r_{a-1}^{\rho} i}{r_{a+1}^{\rho} i} - \frac{r_{a-1}^{\rho} e}{r_{a+1}^{\rho} e} \right)} \left[R_{c0} \left(\frac{1}{r_{e}^{a+1}} - \frac{1}{r_{i}^{a+1}} \right) + R_{c1} \left(\frac{r_{i}}{r_{e}^{a+1}} - \frac{r_{e}}{r_{i}^{a+1}} \right) + R_{c2} \left(\frac{r_{i}^{2}}{r_{e}^{a+1}} - \frac{r_{e}^{2}}{r_{i}^{a+1}} \right) + R_{c3} \left(\frac{r_{i}^{3}}{r_{e}^{a+1}} - \frac{r_{e}^{3}}{r_{i}^{a+1}} \right) \right]
\]

en donde se han agrupado algunos los factores en las siguientes constantes.
\[R_{c0} = (\nu_{r\theta}^2 - a^2) (\beta_\theta - \beta_r) \frac{c_0}{1 - a^2} \]
\[R_{c1} = (\nu_{r\theta}^2 - a^2) (2\beta_\theta - \beta_r) \frac{c_1}{4 - a^2} \]
\[R_{c2} = (\nu_{r\theta}^2 - a^2) (3\beta_\theta - \beta_r) \frac{c_2}{9 - a^2} \]
\[R_{c3} = (\nu_{r\theta}^2 - a^2) (4\beta_\theta - \beta_r) \frac{c_3}{16 - a^2} \]
\[R_{c4} = (\nu_{r\theta}^2 - a^2) (5\beta_\theta - \beta_r) \frac{c_4}{25 - a^2} \]

5.2.6. Puntos singulares

Como en casos anteriores esta solución no es válida para ciertos valores de \(a \). Siguiendo los mismos pasos se deducen las expresiones para cada uno.

Para \(a = 1 \) el desplazamiento radial es

\[u(r) = \frac{1}{r} A + r B - \frac{g_0}{4} r + \frac{g_1}{3} r^2 + \frac{g_2}{8} r^3 + \frac{g_3}{15} r^4 + \frac{g_4}{24} r^5 + \frac{g_0}{2} r \ln r \]

y las tensiones son

\[\sigma_\theta(r) = c_r \left[(1 - \nu_{\theta r}) \frac{1}{r^2} A + (1 + \nu_{\theta r}) B - (1 - \nu_{\theta r}) \frac{g_0}{4} - (\beta_\theta + \nu_{\theta r} \beta_r) c_0 \right] r + \left[(1 + 2\nu_{\theta r}) \frac{g_1}{3} - (\beta_\theta + \nu_{\theta r} \beta_r) c_1 \right] r^2 + \left[(1 + 3\nu_{\theta r}) \frac{g_2}{8} - (\beta_\theta + \nu_{\theta r} \beta_r) c_2 \right] r^3 + \left[(1 + 4\nu_{\theta r}) \frac{g_3}{15} - (\beta_\theta + \nu_{\theta r} \beta_r) c_3 \right] r^4 + \left[(1 + 5\nu_{\theta r}) \frac{g_4}{24} - (\beta_\theta + \nu_{\theta r} \beta_r) c_4 \right] r^5 + \left[(1 - \nu_{\theta r}) \frac{g_0}{2} \ln r \right] \]
5.2. TENSIONES EN ESTADOS TRANSITORIOS DE HIDRATACIÓN

\[\sigma_r(r) = c_r \left[(\nu_{r\theta} - 1) \frac{1}{r^2} A + \nu_{r\theta} + 1 \right] B + (\nu_{r\theta} - 1) \frac{g_0}{4} - (\nu_{r\theta} \beta_\theta + \beta_r) c_0 \\ + \left[(\nu_{r\theta} + 2) \frac{g_1}{3} - (\nu_{r\theta} \beta_\theta + \beta_r) c_1 \right] r + \left[(\nu_{r\theta} + 3) \frac{g_2}{8} - (\nu_{r\theta} \beta_\theta + \beta_r) c_2 \right] r^2 \\ + \left[(\nu_{r\theta} + 4) \frac{g_3}{15} - (\nu_{r\theta} \beta_\theta + \beta_r) c_3 \right] r^3 + \left[(\nu_{r\theta} + 5) \frac{g_4}{24} - (\nu_{r\theta} \beta_\theta + \beta_r) c_4 \right] r^4 \\ + (\nu_{r\theta} + 1) \frac{g_0}{2} \ln r \right] \] (5.51)

Para \(a = 2 \) el desplazamiento es

\[u(r) = \frac{1}{r^2} A + r^2 B - \frac{g_0}{3} r - \frac{g_1}{16} r^2 + \frac{g_2}{8} r^3 + \frac{g_3}{15} r^4 + \frac{g_4}{24} r^5 + \frac{g_1}{4} r^2 \ln r \] (5.52)

y las tensiones son

\[\sigma_\theta(r) = 4c_r \left[(1 - 2\nu_{\theta r}) \frac{1}{r^3} A + (1 + 2\nu_{\theta r}) \nu_{\theta r} B - (1 + \nu_{\theta r}) \frac{g_0}{3} - (\beta_\theta + \nu_{\theta r} \beta_r) c_0 \\ + \left[-1 + 2\nu_{\theta r} \right] \frac{g_1}{16} (\beta_\theta + \nu_{\theta r} \beta_r) c_1 \right] r + \left[(1 + 3\nu_{\theta r}) \frac{g_2}{5} - (\beta_\theta + \nu_{\theta r} \beta_r) c_2 \right] r^2 \\ + \left[(1 + 4\nu_{\theta r}) \frac{g_3}{12} - (\beta_\theta + \nu_{\theta r} \beta_r) c_3 \right] r^3 + \left[(1 + 5\nu_{\theta r}) \frac{g_4}{21} - (\beta_\theta + \nu_{\theta r} \beta_r) c_4 \right] r^4 \\ + (1 - 2\nu_{\theta r}) \frac{g_1}{4} r \ln r \right] \] (5.53)

\[\sigma_r(r) = c_r \left[(\nu_{r\theta} - 1) \frac{1}{r^2} A + (\nu_{r\theta} + 1) \nu_{r\theta} B - (\nu_{r\theta} + 1) \frac{g_0}{3} - (\nu_{r\theta} \beta_\theta + \beta_r) c_0 \\ + \left[-\nu_{r\theta} + 2 \right] \frac{g_1}{16} - (\nu_{r\theta} \beta_\theta + \beta_r) c_1 \right] r + \left[(\nu_{r\theta} + 3) \frac{g_2}{5} - (\nu_{r\theta} \beta_\theta + \beta_r) c_2 \right] r^2 \\ + \left[(\nu_{r\theta} + 4) \frac{g_3}{12} - (\nu_{r\theta} \beta_\theta + \beta_r) c_3 \right] r^3 + \left[(\nu_{r\theta} + 5) \frac{g_4}{21} - (\nu_{r\theta} \beta_\theta + \beta_r) c_4 \right] r^4 \\ + (\nu_{r\theta} + 2) \frac{g_1}{4} r \ln r \right] \] (5.54)

Para \(a = 3 \) el desplazamiento es...
u(r) = \frac{1}{r^3} A + r^3 B - \frac{g_0}{8} r - \frac{g_1}{5} r^2 - \frac{g_2}{36} r^3 + \frac{g_3}{7} r^4 + \frac{g_4}{16} r^5 + \frac{g_5}{6} r^3 \ln r

(5.55)

y las tensiones son

\[\sigma_{\theta}(r) = 9c_r \left((1 - 3\nu_{r\theta}) \frac{1}{r^4} A + (1 + 3\nu_{r\theta}) r^2 B - (1 + \nu_{r\theta}) \frac{g_0}{8} - (\beta_\theta + \nu_{r\theta}\beta_r) c_0 \right) \\
+ \left[- (1 + 2\nu_{r\theta}) \frac{g_1}{5} - (\beta_\theta + \nu_{r\theta}\beta_r) c_1 \right] r + \left[(1 + 3\nu_{r\theta}) \frac{g_2}{36} - (\beta_\theta + \nu_{r\theta}\beta_r) c_2 \right] r^2 \\
+ \left[(1 + 4\nu_{r\theta}) \frac{g_3}{7} - (\beta_\theta + \nu_{r\theta}\beta_r) c_3 \right] r^3 + \left[(1 + 5\nu_{r\theta}) \frac{g_4}{16} - (\beta_\theta + \nu_{r\theta}\beta_r) c_4 \right] r^4 \\
+ (1 - 3\nu_{r\theta}) \frac{g_5}{6} r^2 \ln r \]

(5.56)

\[\sigma_r(r) = c_r \left[(\nu_{r\theta} - 3) \frac{1}{r^4} A + (\nu_{r\theta} + 3) r^2 B + (-\nu_{r\theta} + 1) \frac{g_6}{8} - (\nu_{r\theta}\beta_\theta + \beta_r) c_0 \right) \\
+ \left[(\nu_{r\theta} + 2) \frac{g_1}{5} - (\nu_{r\theta}\beta_\theta + \beta_r) c_1 \right] r + \left[(\nu_{r\theta} + 3) \frac{g_2}{36} - (\nu_{r\theta}\beta_\theta + \beta_r) c_2 \right] r^2 \\
+ \left[(\nu_{r\theta} + 4) \frac{g_3}{7} - (\nu_{r\theta}\beta_\theta + \beta_r) c_3 \right] r^3 + \left[(\nu_{r\theta} + 5) \frac{g_4}{16} - (\nu_{r\theta}\beta_\theta + \beta_r) c_4 \right] r^4 \\
+ (\nu_{r\theta} + 3) \frac{g_5}{6} r^2 \ln r \]

(5.57)

Si se comparan estas tres soluciones se observa una progresión regular y sería fácil escribir las ecuaciones para \(a = 4 \) y \(a = 5 \) sin necesidad de nuevas deducciones matemáticas. En el siguiente capítulo, sobre formulación general, se exponen los términos completos para los cinco valores.

5.2.7. Ejemplo

En el ejemplo del apartado 3.2.2 se ha determinado el desplazamiento y las tensiones para el material saturado, a continuación se presentan los resultados en años sucesivos de la vida del rotor, para 1, 10 y 40 años. Se considera que la resina epoxi es del tipo 976 y la temperatura equivalente de 30°. Se elige algo superior a la media aritmética de las temperaturas de ambientales porque según la ecuación 5.35 la difusibilidad varía exponencialmente con la temperatura.
5.2. TENSIONES EN ESTADOS TRANSITORIOS DE HIDRATACIÓN

En los gráficos la figura 5.7 se representan las variaciones de cada parámetro con las curvas progresivas para los tres periodos de tiempo y para el material saturado o vida infinita. En el gráfico (a) de la primera figura se presenta la absorción de humedad y en el (b) el desplazamiento radial, en el (c) tensión tangencial y en el (d) la radial.

Figura 5.7: Aumento del grado de humedad, desplazamiento radial, tensión tangencial y radial de un rotor en sucesivos años de vida.

Para un tiempo infinito los valores del desplazamiento y las tensiones coinciden con los resultados para el material saturado de la figura 3.9. Se comprueba que la humedad se absorbe muy lentamente, al cabo de un año es muy baja y a los diez años sólo afecta a la zona próxima al exterior. Durante los años de vida de un rotor la hidratación es relativamente baja y las tensiones son también bajas comparadas con las obtenidas en saturación. Por lo cual, afecta mucho menos de lo esperado en el capítulo 3.

Si el rotor se halla a temperaturas más altas la absorción de humedad es mucho mayor, debido a la función exponencial de la temperatura en la ecuación 5.33.
CAPÍTULO 5. TENSIONES RESIDUALES EN ESTADOS NO UNIFORMES
Capítulo 6

FORMULACIÓN GENERAL Y MODELOS MULTICAPA

6.1. Desarrollo de la formulación

6.1.1. Formulación general

En los capítulos anteriores se han estudiado cada tipo de tensión por separado pero para el cálculo del rotor deben considerarse simultáneamente. Las tensiones mecánicas, centrífugas y de aceleración, se superponen a las tensiones permanentes, térmicas y de hidratación, dando lugar a una tensión única total. En este capítulo se unifican los cálculos individuales y se genera una formulación unificada para determinar las tensiones globales. Se incluyen todos los tipos de cargas descritos anteriormente, incluso los estados no uniformes del capítulo 5. Una versión simplificada de esta formulación general fue publicada en Pérez-Aparicio y Ripoll (2003) [39].

Aunque las tensiones finales son la suma de las tensiones individuales es conveniente repetir el cálculo para incluir en un mismo proceso las variables de todas las cargas, con el objetivo de dar coherencia al sistema de cálculo y utilizar parámetros generales que simplifiquen las fórmulas finales. Como se ha visto, las ecuaciones de las distintas cargas contienen términos comunes y términos particulares, y ahora se unifican formando términos globales.

La tarea de unificación no es complicada porque en todas ellas se ha seguido un proceso deductivo similar, de manera que los pasos intermedios y los términos de las ecuaciones son parecidos. No es necesario repetir de nuevo todos los pasos del cálculo, en muchos casos se pueden aplicar directamente las soluciones halladas anteriormente, por ejemplo en la resolución de las ecuaciones diferenciales o en la definición de algunos parámetros intermedios.

En este capítulo se elabora, además, un sistema de cálculo de rotores en multicapa. En los anteriores se han resuelto solamente rotores monocapa, ahora con las ecuaciones generales es fácil deducir un sistema completo de cálculo. Permite resolver cualquier tipo
de configuración híbrida distribuida en multicapa y en los capítulos 7 y 8 se utiliza para calcular el pretensado mecánico y térmico porque en ellos el rotor se divide en zonas radiales.

En la última sección del capítulo se estudia la rotura del rotor comparando las tensiones calculadas con la resistencia del material. Los ejemplos de cálculo se aprovechan para apuntar algunos procedimientos simples para la mejora del diseño.

6.1.2. Condiciones de la formulación

Para los cálculos se utilizan las condiciones del modelo unificado desarrollado en el capítulo 4 que incluye, dentro de un único sistema de ecuaciones, los modelos de TP, DAC y cualquier estado intermedio de la zona de transición.

Se aplican todas las cargas analizadas anteriormente, a excepción de la aceleración angular. Por orden de importancia sobre las tensiones finales del rotor son:

1. Tensiones mecánicas producidas por la fuerza centrífuga originada por la velocidad angular \(\omega \).

2. Tensiones residuales de origen térmico creadas en el enfriamiento después del curado, \(\Delta T \).

3. Tensiones residuales causadas por la hidratación de la resina, \(\Delta c \), a lo largo de la vida del rotor.

No se incluye la aceleración angular porque crea una tensión cortante, \(\tau_{\theta r} \), independiente del resto de tensiones que no es necesario calcularla dentro del sistema general de ecuaciones. Sus valores se determinan directamente de las ecuaciones 2.76 y 2.77 del apartado 2.32 a partir de la aceleración angular \(\alpha \).

La velocidad angular \(\omega \) es un valor único y se aplica a través de la fuerza centrífuga \(f_c \) en la ecuación 2.2.

El incremento de la temperatura \(\Delta T \) en el curado puede ser uniforme o variable en \(r \). En este último caso sólo se contempla un incremento producido por la diferencia de temperaturas entre la superficie interna y la externa, descrita en el apartado 5.1.2. En él se genera la distribución logarítmica de temperatura de las fórmulas 5.5 y 5.6 y que en resumen son

\[
\Delta T(r) = t_0 + t_1 \ln r
\]

\[
t_0 = T_f - T_i + \frac{T_e - T_i}{\ln r_e - \ln r_i} \ln r_i ; \quad t_1 = -\frac{T_e - T_i}{\ln r_e - \ln r_i}
\]

(6.1)

Se considera que durante el curado la temperatura en el radio interior \(r_i \) es \(T_i \) y en el radio exterior \(r_e \) es \(T_e \), y se enfria hasta una temperatura final uniforme \(T_f \), figura 6.1(a). En particular, si el curado se realiza con \(T_i = T_e \) se reduce al caso de temperatura uniforme del capítulo 3 y el incremento de temperatura \(\Delta T \) de la ecuación 6.1 es \(T_f - T_i \).
Si el rotor incorpora un mandrino metálico interno, con un coeficiente de transmisión térmica mucho más elevado que en el material compuesto, la variación radial de temperatura en el metal es prácticamente nula. En este caso la función de temperatura tiene dos tramos diferenciados, un valor constante en el mandrino y una función logarítmica a partir del radio externo del mandrino \(r_i' \), figura 6.2, como se muestra en la curva inferior de la figura 6.1(a).

![Figura 6.1: Distribución radial de temperatura y de humedad en función del radio. Si el rotor incorpora un mandrino hasta \(r_i' \) las distribuciones son distintas.](image)

En el capítulo 5 se ha descrito cómo la humedad \(\Delta c \) difícilmente llegaría a uniformizarse a lo largo de la vida del rotor y, por lo tanto, el valor final es una función de \(r_i' \), figura 6.1(b). En la ecuación 6.2 se resume las funciones 5.34 y 5.35 del estado transitorio deducidas a partir de la ley de Springer de los apartados 5.2.2 y 5.2.3.

\[
\Delta c = c_0 + c_1 r + c_2 r^2 + c_3 r^3 + c_4 r^4 \quad (6.2)
\]

Si el rotor incluye un mandrino metálico impermeable a la humedad la función es asimétrica, como se describe en el apartado 5.2.3, y la línea de simetría de la distribución se sitúa en el radio externo del mandrino \(r_i' \), figura 6.1(b).

Las tensiones creadas por estas cargas se determinan con el modelo unificado descrito en el apartado 4.2.8, en donde el parámetro \(\varphi(z) \), definido en los apartados 4.2.4 y 4.2.5, permite simular cualquier posición axial. Su valor se determina mediante la ecuación 4.71 y es función de \(z \); aunque en la práctica, las tensiones más desfavorables para la resistencia se hallan en \(z > z_u \), o sea para \(\varphi = 1 \).

6.1.3. Desarrollo de la formulación general

En el desarrollo de la formulación general se siguen los mismos pasos que en el capítulo 2: a partir de las ecuaciones constitutivas del material, de la geometría del rotor y del tipo de carga se deducen las ecuaciones del desplazamiento radial y las tensiones. Aquí se presenta un resumen de este proceso, solamente los pasos imprescindibles para unificar
las variables y deducir las ecuaciones globales. En ellos se definen los nuevos parámetros intermedios que simplifican las expresiones. No es necesario resolver de nuevo las ecuaciones diferenciales porque se utilizan las soluciones halladas en los capítulos anteriores.

Figura 6.2: Coordenadas y estado de tensiones en un punto del cilandro

Un punto cualquiera del rotor, definido por la posición radial r y la distancia z al extremo lateral, como se muestra en la figura 6.2, cumple la ecuación constitutiva del material de la ecuación 2.6 ampliada con el incremento de la temperatura y de la humedad

\[
\begin{bmatrix}
\varepsilon_\theta \\
\varepsilon_r \\
\varepsilon_z
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{E_\theta} - \frac{\nu_{\theta r}}{E_r} & -\frac{\nu_{\theta z}}{E_z} \\
-\frac{\nu_{r \theta}}{E_\theta} & \frac{1}{E_r} - \frac{\nu_{r z}}{E_z} \\
-\frac{\nu_{z \theta}}{E_\theta} & -\frac{\nu_{z r}}{E_r} & \frac{1}{E_z}
\end{bmatrix}
\begin{bmatrix}
\sigma_\theta \\
\sigma_r \\
\sigma_z
\end{bmatrix}
+ \begin{bmatrix}
\alpha_\theta \\
\alpha_r \\
\alpha_z
\end{bmatrix}
\Delta T
+ \begin{bmatrix}
\beta_\theta \\
\beta_r \\
\beta_z
\end{bmatrix}
\Delta c \quad (6.3)
\]

Las propiedades del material que varían en función de la dirección \(\theta, r \) y \(z \) toman valores diferentes según la orientación de las fibras, longitudinal (L) o transversal (T). Estas se orientan sólo en las dos direcciones vistas en capítulos anteriores: circunferencial y axial, o sea, 0° y 90° según la nomenclatura de la figura 1.5. Deben asignarse, por lo tanto, los valores de los módulos elásticos \(E \), los coeficientes de Poisson \(\nu \), los coeficientes de dilatación térmica \(\alpha \) y los coeficientes de dilatación por hidratación \(\beta \).

A partir de la ecuación 6.3 se deduce la deformación axial \(\varepsilon_z \), igual que en el cálculo en DP del apartado 2.2.8, como una función de las tensiones y las dilataciones

\[
\varepsilon_z = -\frac{\nu_{z \theta}}{E_\theta} \sigma_\theta - \frac{\nu_{z r}}{E_r} \sigma_r + \frac{1}{E_z} \sigma_z + \alpha_z \Delta T + \beta_z \Delta c \quad (6.4)
\]

De ella se obtiene la tensión axial \(\sigma_z \)

\[
\sigma_z = E_z \left(\frac{\nu_{z \theta}}{E_\theta} \sigma_\theta + \frac{\nu_{z r}}{E_r} \sigma_r + \varepsilon_z - \alpha_z \Delta T - \beta_z \Delta c \right) \quad (6.5)
\]
6.1. DESARROLLO DE LA FORMULACIÓN

El proceso de cálculo de esta tensión σ_z es distinto que en las otras dos tensiones, σ_θ y σ_r. Tal como se ha estudiado en el capítulo 4, su valor depende principalmente de la posición z, de manera que es nulo en el extremo, $z = 0$, y alcanza un valor máximo y estable en puntos lejanos del extremo. A este último se ha denominado σ^u_z y se calcula mediante el sistema DAC de la sección 4.1, pero ahora con todas las cargas. Para ello, debe determinarse, según el proceso iterativo del apartado 4.1.4, un valor constante de ε_z, denominado ε^u_z, que sustituido en la propia ecuación 6.5 da lugar a una F_z nula.

$$\sigma^u_z = E_z \left(\frac{\nu_{rz}}{E_r} \sigma_r + \frac{\nu_{rz}}{E_r} \sigma_r + \varepsilon^u_z - \alpha_z \Delta T - \beta_z \Delta c \right) \quad (6.6)$$

Para hallar la tensión σ_z en un punto cualquiera de coordenadas r y z se aplica el cálculo aproximado de la sección 4.2. En la ecuación 4.27 la tensión σ_z es el producto de la tensión σ^u_z, que es función sólo de r, y con el parámetro φ, que es función de z.

$$\sigma_z(r,z) = \varphi(z) \sigma^u_z(r) \quad (6.7)$$

El parámetro φ es independiente del tipo de carga y su valor viene dado en la ecuación 4.71. En él se incluye, junto con la posición z, el sistema de cálculo: $\varphi = 0$ corresponde a TP ($z = 0$), $\varphi = 1$ a DAC ($z > z_u$) y $0 < \varphi < 1$ a la zona de transición.

Este cálculo constituye el modelo unificado descrito en el apartado 4.2.8 que permite determinar las tensiones y deformaciones en cualquier posición r y z. Cabe hacer notar que deben realizarse dos cálculos sucesivos, el primero para determinar ε^u_z mediante el DAC, con $\varphi = 1$, y el segundo para hallar las tensiones en la posición z, con el valor de φ correspondiente.

Siguiendo con el proceso deductivo de las fórmulas, la tensión axial σ_z de la ecuación 6.7 se sustituye en la ecuación general 6.3 y se obtienen las deformaciones tangencial y radial

$$\begin{align*}
\varepsilon_\theta &= \left(\frac{1}{E_\theta} - \frac{\nu_{rz} \nu_{\theta z}}{E_\theta} \right) \sigma_\theta - \left(\frac{\nu_{rz} \nu_{\theta z}}{E_r} + \frac{\nu_{ rz} \nu_{rz}}{E_r} \right) \sigma_r - \nu_{gz} \varphi \varepsilon^u_z \\
&\quad + (\alpha_{\theta z} + \nu_{\theta z} \varphi \alpha_z) \Delta T + (\beta_{\theta z} + \nu_{\theta z} \varphi \beta_z) \Delta c \\
\varepsilon_r &= -\left(\frac{\nu_{rz}}{E_\theta} + \frac{\nu_{rz} \nu_{\theta z}}{E_\theta} \right) \sigma_\theta + \left(\frac{1}{E_r} - \frac{\nu_{rz} \nu_{rz}}{E_r} \right) \sigma_r - \nu_{rz} \varphi \varepsilon^u_z \\
&\quad + (\alpha_{r z} + \nu_{r z} \varphi \alpha_z) \Delta T + (\beta_{r z} + \nu_{r z} \varphi \beta_z) \Delta c
\end{align*} \quad (6.8)$$

Esta ecuación se simplifica agrupando las propiedades elásticas en los parámetros p, q y s, igual que en apartado 2.2.8, y definiendo nuevos parámetros α_H, α_R y β_H, β_R para agrupar las propiedades térmicas y de hidratación respectivamente.
p = \frac{1 - \varphi \nu_r \nu_z}{E_r}
q = \frac{\nu_{\theta r} + \varphi \nu_{\theta z} \nu_r}{E_r} = \frac{\nu_{\theta r} + \varphi \nu_{r z} \nu_{\theta z}}{E_\theta}
\alpha_H = \alpha_\theta + \nu_{\theta z} \varphi \alpha_z
\alpha_R = \alpha_r + \nu_{r z} \varphi \alpha_z
\beta_H = \beta_\theta + \nu_{\theta z} \varphi \beta_z
\beta_R = \beta_r + \nu_{r z} \varphi \beta_z

En donde, el subíndice \(H \) representa la dirección tangencial \(\theta \) y el \(R \) la radial \(r \). Se observa que la composición de las ecuaciones de estos cuatro parámetros son muy similares, en cada una se suma un coeficiente, \(\alpha \) o \(\beta \), con el efecto del coeficiente en la dirección axial ponderado con el parámetro \(\varphi \). Utilizando estos parámetros la ecuación de las deformaciones 6.8 se reescribe de la siguiente forma

\[
\begin{aligned}
\left\{ \varepsilon_\theta \right\} &= \left[\begin{array}{cc} s & -q \\ -q & p \end{array} \right] \left\{ \sigma_\theta \right\} - \left\{ \nu_{\theta z} \right\} \varphi \varepsilon_z^u + \left\{ \alpha_H \right\} \Delta T + \left\{ \beta_H \right\} \Delta c \\
\left\{ \varepsilon_r \right\} &= \left[\begin{array}{cc} s & -q \\ -q & p \end{array} \right] \left\{ \sigma_r \right\} - \left\{ \nu_{r z} \right\} \varphi \varepsilon_z^u + \left\{ \alpha_R \right\} \Delta T + \left\{ \beta_R \right\} \Delta c
\end{aligned}
\]

(6.10)

Estas deformaciones están relacionadas con el desplazamiento radial \(u \) mediante las condiciones de geometría cilíndrica según las ecuaciones cinéticas 2.3 o sus expresiones simplificadas de la ecuación 2.5

\[
\varepsilon_\theta = \frac{u}{r} \quad ; \quad \varepsilon_r = u_r
\]

Aislando las tensiones de la ecuación 6.10 se deduce

\[
\begin{aligned}
\left\{ \sigma_\theta \right\} &= \frac{1}{ps - q^2} \left[\begin{array}{cc} p & q \\ q & s \end{array} \right] \left\{ \frac{u}{r} + \nu_{\theta z} \varphi \varepsilon_z^u - \alpha_H \Delta T - \beta_H \Delta c \right\} \\
\left\{ \sigma_r \right\} &= \frac{1}{ps - q^2} \left[\begin{array}{cc} p & q \\ q & s \end{array} \right] \left\{ u_r + \nu_{r z} \varphi \varepsilon_z^u - \alpha_R \Delta T - \beta_R \Delta c \right\}
\end{aligned}
\]

(6.11)

y unificando términos se reescriben de la siguiente forma

\[
\begin{aligned}
\sigma_\theta &= a^2 c_r \left(\frac{u}{r} + \nu_H u_r + n_H \varphi \varepsilon_z^u - \alpha_H \Delta T - b_H \Delta c \right) \\
\sigma_r &= c_r \left(\nu_R \frac{u}{r} + u_r + n_R \varphi \varepsilon_z^u - \alpha_R \Delta T - b_R \Delta c \right)
\end{aligned}
\]

(6.12)

en donde, se agrupan las propiedades del material en los parámetros \(a \) y \(c_r \) del capítulo 2 y en otros nuevos. De ellos, \(\nu_H, \nu_R \) y \(n_H, n_R \) agrupan sólo propiedades elásticas y \(a_H, a_R \) y \(b_H, b_R \), agrupan también propiedades térmicas y de hidratación.
6.1. DESARROLLO DE LA FORMULACIÓN

\[a = \frac{\sqrt{p}}{s} \]
\[c_r = \frac{s}{ps - q^2} \]
\[a^2 c_r = \frac{p}{ps - q^2} \]

\[\nu_H = \frac{q}{p} \]
\[\nu_R = \frac{q}{s} \]

\[n_H = \nu_{\theta z} + \nu_H \nu_{rz} \]
\[n_R = \nu_R \nu_{\theta z} + \nu_{rz} \]

\[a_H = \alpha_H + \nu_H \alpha_R \]
\[a_R = \nu_R \alpha_H + \alpha_R \]

\[b_H = \beta_H + \nu_H \beta_R \]
\[b_R = \nu_R \beta_H + \beta_R \]

Estas definiciones tienen una estructura similar a las ecuaciones 6.9, están formadas por la suma del parámetro en una dirección más el efecto del parámetro en dirección perpendicular.

En las ecuaciones 6.12 el término en \(\varepsilon_{uz}^v \) es un valor constante, mientras que \(\Delta T \) y \(\Delta c \) pueden variar con \(r \), según las ecuaciones 6.1 y 6.2. Estas tensiones deben cumplir la condición de equilibrio de fuerzas de la ecuación 2.1(a) o su simplificada 2.4, en la cual el término de la fuerza centrífuga es \(f_c = \rho \omega^2 r \).

\[\sigma_{rr} + \frac{1}{r} \left(\sigma_r - \sigma_\theta \right) = -f_c \]

Sustituyendo las tensiones por los valores de la ecuación 6.12 se obtiene la ecuación del desplazamiento en forma de polinomio en \(r \)

\[u_{rr} + \frac{1}{r} u_r - \frac{a^2}{r^2} u = \left(d + e_0 + g_0 \right) \frac{1}{r} + g_1 + (b + g_2) r + g_3 r^2 + g_4 r^3 + e_1 \ln r \]

en donde se agrupan los parámetros por cargas como en los capítulos anteriores, pero ahora su definición es globales.

\[b = -\frac{\rho \omega^2}{c_r} \]
\[g_0 = (-a^2 \beta_H + \beta_R) c_0 \]
\[d = (a^2 n_H - n_R) \varphi \varepsilon_{uz}^v \]
\[g_1 = (-a^2 \beta_H + 2 \beta_R) c_1 \]
\[e_0 = (-a^2 a_H + a_R) t_0 + a_R t_1 \]
\[g_2 = (-a^2 b_H + 3 b_R) c_2 \]
\[e_1 = (-a^2 a_H + a_R) t_1 \]
\[g_3 = (-a^2 b_H + 4 b_R) c_3 \]
\[g_4 = (-a^2 b_H + 5 b_R) c_4 \]

En cada uno de ellos se resume el efecto de una carga: el parámetro \(b \) es función de la velocidad angular \((\omega) \), el \(d \) de la deformación axial uniforme \((\varepsilon_{uz}^v) \), los parámetros \(e \) de la temperatura \((\Delta T) \) y los \(g \) de la humedad \((\Delta c) \).
La ecuación diferencial 6.15 se resuelve mediante el proceso del apartado 2.2.4 ampliado por las soluciones parciales de los capítulos 3 y 5. Esta ampliación es posible gracias a la composición polinómica de la función \(f(r) \), definida en la ecuación 2.16, que permite resolver las integrales de las ecuaciones 2.23 y 2.25 mediante sumandos separados. Cada uno de los términos genera soluciones parciales que están resueltas en los siguientes apartados: \(\frac{1}{r} \) en 3.1.4, \(r^0 \) en 5.2.4, \(r^2 \) en 5.2.4, \(r^3 \) en 5.2.4 y \(\ln r \) en 5.1.3.

La solución global del desplazamiento es también polinómica

\[
u = A \frac{1}{r^a} + B r^a + U_1 r + U_2 r^2 + U_3 r^3 + U_4 r^4 + U_5 r^5 + U_{11} r \ln r \quad (6.17)
\]

en la cual los coeficientes \(A \) y \(B \) son dependientes de las condiciones de contorno y en los coeficientes \(U \) se agrupan las constantes de las cargas para cada uno de los sumandos:

\[
U_1 = \frac{d + e_0 + g_0}{1 - a^2} - \frac{2 e_1}{(1 - a^2)^2} \quad U_4 = \frac{g_3}{16 - a^2}
\]

\[
U_2 = \frac{g_1}{4 - a^2} \quad U_5 = \frac{g_4}{25 - a^2} \quad (6.18)
\]

\[
U_3 = \frac{b + g_2}{9 - a^2} \quad U_{11} = \frac{e_1}{1 - a^2}
\]

Las tensiones, tangencial y radial, se obtienen aplicando la ecuación del desplazamiento a las ecuaciones 6.12. En ellas también se agrupan las constantes de las cargas para cada sumando.

\[
\sigma_\theta = H_A A \frac{1}{r_{a+1}} + H_B r^a + H_0 + H_1 r + H_2 r^2 + H_3 r^3 + H_4 r^4 + H_1 \ln r \quad (6.19)
\]

\[
H_0 = a^2 c_r [(1 + \nu_H) U_1 + \nu_H U_{11} + n_H \varphi \varepsilon_z^0 - a_H t_0 - b_H c_0] \quad (6.20)
\]

\[
H_1 = a^2 c_r [(1 + 2 \nu_H) U_2 - b_H c_1] \quad H_A = a^2 c_r (1 - a \nu_H)
\]

\[
H_2 = a^2 c_r [(1 + 3 \nu_H) U_3 - b_H c_2] \quad H_B = a^2 c_r (1 + a \nu_H)
\]

\[
H_3 = a^2 c_r [(1 + 4 \nu_H) U_4 - b_H c_3] \quad H_1 = a^2 c_r [(1 + \nu_H) U_{11} - a_H t_1]
\]

\[
H_4 = a^2 c_r [(1 + 5 \nu_H) U_5 - b_H c_4]
\]

\[
\sigma_r = R_A A \frac{1}{r_{a+1}} + R_B r^a + R_0 + R_1 r + R_2 r^2 + R_3 r^3 + R_4 r^4 + R_1 \ln r \quad (6.21)
\]
6.1. DESARROLLO DE LA FORMULACIÓN

\[R_0 = c_r [(\nu R + 1)U_1 + U_{1l} + n_R \varphi \varepsilon_z^u - a_R t_0 - b_R c_0] \quad (6.22) \]

\[R_1 = c_r [(\nu R + 2)U_2 - b_R c_1] \quad R_A = c_r (\nu R - a) \]

\[R_2 = c_r [(\nu R + 3) U_3 - b_R c_2] \quad R_B = c_r (\nu R + a) \]

\[R_3 = c_r [(\nu R + 4) U_4 - b_R c_3] \quad R_l = c_r [(\nu R + 1) U_{1l} - a_R t_1] \]

\[R_4 = c_r [(\nu R + 5) U_5 - b_R c_4] \]

Finalmente la tensión axial se obtiene de la ecuación 6.7, sustituyendo \(\sigma_z^u \) de la ecuación 6.6. Su valor varía con la posición \(z \) a través de \(\varphi \).

\[\sigma_z = \varphi [\nu \theta z \sigma_{\theta} + \nu_{rz} \sigma_r + E_z (\varepsilon_z^u - \alpha_z \Delta T - \beta_z \Delta c)] \quad (6.23) \]

6.1.4. Puntos singulares

Esta solución no es válida si el valor de \(a \) es entero, de 1 a 5. Para cada uno existe una solución particular deducida en capítulos anteriores. A continuación se resumen todas las soluciones en una sola ecuación para cada parámetro, \(u, \sigma_{\theta} \) y \(\sigma_r \), incluida la solución del apartado anterior, en la que los coeficientes tienen expresiones particulares para cada valor de \(a \). La ecuación del desplazamiento es

\[u = A \frac{1}{r^a} + B r^a + U_1 r + U_2 r^2 + U_3 r^3 + U_4 r^4 + U_5 r^5 + U_{1l} r \ln r + U_{2l} r^2 \ln r + U_{3l} r^3 \ln r + U_{4l} r^4 \ln r + U_{5l} r^5 \ln r + U_{1l} r \ln^2 r \quad (6.24) \]

en donde los coeficientes \(U \) están definidos en la tabla 6.25 para cada valor de \(a \). Los coeficientes no especificados conservan el valor general de la ecuación 6.18 o, si no están definidos ni en uno ni en otro, son nulos.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(U_1)</th>
<th>(U_{1l})</th>
<th>(U_2l)</th>
<th>(U_3l)</th>
<th>(U_{4l})</th>
<th>(U_{5l})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-d + e_0 + g_0) / 4 + (e_1 / 8)</td>
<td>(d + e_0 + g_0) / 2 - (e_1 / 4)</td>
<td>(e_1 / 4)</td>
<td>(g_1 / 4)</td>
<td>((b + g_2) / 6)</td>
<td>(g_3 / 8)</td>
</tr>
<tr>
<td>2</td>
<td>(-g_1 / 16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(- (b + g_2) / 36)</td>
<td></td>
<td>((b + g_2) / 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(-g_3 / 64)</td>
<td></td>
<td></td>
<td>(g_3 / 8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 5 | \(-g_4 / 100\) | | | | \(g_4 / 10\) | | | (6.25)
La ecuación general de la tensión tangencial es

\[\sigma_\theta = A \frac{1}{r^{a+1}} + B r^{a-1} + H_0 + H_1 r + H_2 r^2 + H_3 r^3 + H_4 r^4 + H_l \ln r + H_{ll} \ln r + H_{2l} r^2 \ln r + H_{3l} r^3 \ln r + H_{4l} r^4 \ln r + H_{ll} r^2 \ln r \]

(6.26)

en la cual los coeficientes \(H \) están definidos en la tabla 6.29 y los no especificados aquí, ni en la ecuación 6.20, son cero. En las fórmulas se incluyen algunos valores \(U \) de la tabla 6.25.

\(a = 1 \)	\(H_l = a^2 c_r \ [(1 + \nu H) U_{ll} - a_H t_1 + 2 \nu_H U_{ll}] \)	\(H_{ll} = a^2 c_r \ [(1 + \nu H) U_{ll}] \)
\(a = 2 \)	\(H_1 = a^2 c_r \ [(1 + 2 \nu H) U_2 - b_H c_1 + \nu_H U_{2l}] \)	\(H_{1l} = a^2 c_r \ [(1 + 2 \nu H) U_{2l}] \)
\(a = 3 \)	\(H_2 = a^2 c_r \ [(1 + 3 \nu H) U_3 - b_H c_2 + \nu_H U_{3l}] \)	\(H_{2l} = a^2 c_r \ [(1 + 3 \nu H) U_{3l}] \)
\(a = 4 \)	\(H_3 = a^2 c_r \ [(1 + 4 \nu H) U_4 - b_H c_3 + \nu_H U_{4l}] \)	\(H_{3l} = a^2 c_r \ [(1 + 4 \nu H) U_{4l}] \)
\(a = 5 \)	\(H_4 = a^2 c_r \ [(1 + 5 \nu H) U_5 - b_H c_4 + \nu_H U_{5l}] \)	\(H_{4l} = a^2 c_r \ [(1 + 5 \nu H) U_{5l}] \)

(6.27)

La ecuación de la tensión radial es

\[\sigma_r = A \frac{1}{r^{a+1}} + B r^{a-1} + R_0 + R_1 r + R_2 r^2 + R_3 r^3 + R_4 r^4 + R_l \ln r + R_{l l} r \ln r + R_{2 l} r^2 \ln r + R_{3 l} r^3 \ln r + R_{4 l} r^4 \ln r + R_{l l} r^2 \ln r \]

(6.28)

en donde los coeficientes \(R \) están definidos en la tabla 6.29 y los no especificados están definidos en la ecuación 6.22 o son nulos.

\(a = 1 \)	\(R_l = c_r \ [(\nu R + 1) U_{ll} - a_R t_1 + 2 U_{ll}] \)	\(R_{ll} = c_r \ [(\nu R + 1) U_{ll}] \)
\(a = 2 \)	\(R_1 = c_r \ [(\nu R + 2) U_2 - b_R c_1 + U_{2l}] \)	\(R_{1l} = c_r \ [(\nu R + 2) U_{2l}] \)
\(a = 3 \)	\(R_2 = c_r \ [(\nu R + 3) U_3 - b_R c_2 + U_{3l}] \)	\(R_{2l} = c_r \ [(\nu R + 3) U_{3l}] \)
\(a = 4 \)	\(R_3 = c_r \ [(\nu R + 4) U_4 - b_R c_3 + U_{4l}] \)	\(R_{3l} = c_r \ [(\nu R + 4) U_{4l}] \)
\(a = 5 \)	\(R_4 = c_r \ [(\nu R + 5) U_5 - b_R c_4 + U_{5l}] \)	\(R_{4l} = c_r \ [(\nu R + 5) U_{5l}] \)

(6.29)

Para los valores de \(a \) muy próximos a cada uno de los valores enteros siguen siendo válidas las ecuaciones generales del apartado anterior, tal como se ha descrito en el estudio del punto singular del apartado 2.2.6.
6.1. DESARROLLO DE LA FORMULACIÓN

6.1.5. Ejemplo

Para comprobar el sistema general de cálculo se presenta un ejemplo con carga centrífuga y tensiones residuales simultáneamente. Se aplica al ejemplo del apartado 4.1.5 pero con la carga térmica del apartado 4.1.7.

Los datos del rotor son: fibra de vidrio y resina epoxi curada, radios 0,3 y 0,5 m, curado a temperatura uniforme de 120°C y enfriado hasta 20°C y gira a 10000 rpm. Se calcula el desplazamiento y las tensiones en tres posiciones de z de 0,4, 0,1 y 0 m. Se supone, igual que en los otros casos, que la rigidez del sistema de unión con el eje es muy baja, \(k_r = 0 \). No se aplican cargas de humedad porque cuando aparecen las tensiones de hidratación a lo largo de la vida se reducen las tensiones globales del rotor.

El proceso de cálculo tiene dos partes:

1. El cálculo en DAC: asignando \(\varphi = 1 \) se determina el valor \(\varepsilon_z^u \), siguiendo el método del apartado 4.1.4 y con la función \(\sigma_z^u \) se hallan los valores de \(n \) y \(m \), de las ecuaciones 4.43 y 4.65.

2. El cálculo para la posición \(z \): se determina el valor de \(\varphi \) con la ecuación 4.71 y, finalmente, el desplazamiento y las tensiones con las ecuaciones 6.17, 6.19, 6.21 y 6.23.

![Figura 6.3: Deformación y tensiones en tres posiciones axiales de un rotor de fibra de vidrio.](image)

Los resultados del desplazamiento radial \(u \), la tensión tangencial \(\sigma_\theta \), la radial \(\sigma_r \) y la axial \(\sigma_z \) se muestran en la figura 6.3. Se observa que el desplazamiento, la tensión tangencial y la radial son prácticamente coincidentes para las tres posiciones y son independientes de \(z \), tal como se ha comentado en el capítulo 4. La tensión axial aumenta con \(z \) y el resultado en la posición \(z = 0,4 \) m, en donde el valor medio \(\varphi \) es 0,97, es aplicable para \(z \) mayores. Estos resultados son totalmente coherentes con los del capítulo 4.
Es evidente que este último tiene las tensiones más desfavorables y, por lo cual, es el único se utiliza en los cálculos posteriores. O sea, a partir de ahora solamente se utiliza $\varphi = 1$.

6.2. Aplicación a modelos multicapa

6.2.1. Rotores multicapa

En el capítulo 1 se ha comentado que el tipo de rotor más aplicado en la actualidad es la configuración en multicapa. Está compuesto por varias capas de distinto material apiladas como muestra en la figura 1.3(e). Su objetivo principal es disminuir los efectos perjudiciales de la tensión radial.

En el apartado 2.2.7 se ha expuesto el proceso elástico de generación de la tensión radial y aumento de la tensión tangencial en el radio interior. En la figura 2.7 se muestra que las tensiones y los desplazamientos en los aros individuales, dibujo (b), se modifican debido a las diferencia entre sus desplazamientos, $u_3' > u_2' > u_1'$. Para que el cilindro permanezca unido, dibujo (c), el aro interior debe dilatarse y el exterior debe contraerse, para lo cual es necesaria una tensión radial de tracción. Pero si la diferencia de desplazamiento entre ellos fuese menor la tensión radial sería también menor.

Figura 6.4: Disminución de las tensiones, respecto del rotor simple de la figura 2.7, mediante 3 capas de material distinto, con elasticidades crecientes.

Una forma fácil de conseguir que la diferencia de desplazamiento sea menor es aumentando la elasticidad del material en los aros interiores. En la figura 6.4 muestra el mismo proceso que en la figura 2.7 pero para un rotor híbrido, en el cual los tres aros son de material distinto material y de rigidez creciente con el radio ($E_{\theta 1} < E_{\theta 2} < E_{\theta 3}$). En la primera etapa (b), con aros independientemente, las tensiones tangenciales σ_θ' son las mismas que en la figura 2.7 pero los desplazamientos, u_3', u_2' y u_1', son ahora similares. En la segunda etapa (c) el desplazamiento radial Δu necesario para unirlos es pequeño y, por lo tanto, la tensión radial σ_r es menor y la tangencial σ_θ aumenta poco.

Para que el desplazamiento radial fuese constante a lo largo del radio, la rigidez del material debería variar progresivamente en función de r^3, pero esto es imposible. Esta
variación sólo puede ser discreta, porque la rigidez depende principalmente de la elasticidad longitudinal de la fibra y sólo se dispone de un número limitado de tipos de fibras. Luego, la progresión se consigue bobinando en capas sucesivas ordenadas según su elasticidad y con un espesor adecuado al incremento de rigidez.

6.2.2. Nomenclatura y fórmulas

El cálculo del rotor multicapa se realiza aplicando a cada capa las ecuaciones del apartado 6.1.3. En la figura 6.5 se muestra el rotor con las capas numeradas a partir del radio interior, desde 1 hasta n. Los radios de separación se numeran en el mismo sentido, al radio interior (r_i) le corresponde r_1 y al exterior (r_e) r_{n+1}, de forma que una capa cualquiera i está delimitada por el radio inferior r_i y el superior r_{i+1}.

![Figura 6.5: Nomenclatura de capas y radios en un rotor multicapa.](image)

Si el rotor lleva incorporado el mandrino metálico de bobinado se considera como una capa más y le corresponde el número 1. Si una capa, aún siendo de un único material, tiene dos zonas diferenciadas por alguna de sus propiedades, ya sea en las características iniciales o finales, o durante alguna fase del proceso de fabricación, se considera como dos capas distintas. Es el caso, por ejemplo, del curado por etapas del capítulo 8, en el cual dos o más zonas de una capa se curan en momentos distintos y, a efectos de cálculo, se consideran como capas distintas.

En el cálculo las ecuaciones de desplazamiento y tensiones 6.17, 6.19, 6.21 y 6.23 se aplican para cada capa. Las constantes de tipo U, H y R son propias para cada capa i (U^i, H^i y R^i) y dependen de las propiedades de los materiales y las cargas del rotor. Las constantes A y B, también propias para cada capa (A^i y B^i), dependen de sus condiciones de contorno.
6.2.3. Determinación de las constantes

Las constantes A^i y B^i de una capa se determinan mediante las condiciones de continuidad, o sea, igualando el desplazamiento u^i y la tensión radial σ^i_r en la frontera entre dos capas. Con ellas se genera, para el total de las n capas, un sistema de $2n$ ecuaciones con $2n$ incógnitas. En cada una se aplican las fórmulas 6.17 y 6.21, aunque es más práctico utilizar las ecuaciones 6.24 y 6.28 del material singular porque son más generales, a pesar de tener algunos coeficientes nulos cuando el material no es singular.

Estas ecuaciones se aplican a los radios frontera entre capas, de manera que la variable r se convierte en constante r_i, en cambio, las constantes A^i y B^i son ahora incógnitas. Sus términos polinómicos se unifican ahora en tres factores, dos para las incógnitas, A^i y B^i, y uno para el resto de sumandos porque son constantes.

El desplazamiento $u^i(r_i)$ en el radio inferior r_i de la capa i es

$$u^i(r_i) = \beta^i_u A^i + \gamma^i_u B^i + \alpha^i_u$$

en donde las constantes β^i_u, γ^i_u y α^i_u son

$$\begin{cases}
\beta^i_u = \frac{1}{r^a_i} \\
\gamma^i_u = r^a_i \\
\alpha^i_u = U^i_1 r_i + U^i_2 r_i^2 + U^i_3 r_i^3 + U^i_4 r_i^4 + U^i_5 r_i^5 + U^i_6 r_i^6 + U^i_7 r_i^7 + U^i_8 r_i^8 + U^i_9 r_i^9 + \ldots
\end{cases}$$

Para la frontera superior de la capa i las ecuaciones son las mismas pero sustituyendo r_i por r_{i+1}. En ellas, algunos términos son nulos cuando el material no es singular, según la definición de los coeficientes de las tablas 6.25 y 6.29.
Estas ecuaciones se aplican a los límites de las \(n \) capas, figura 6.5: en las fronteras entre dos capas sucesivas y en los límites, inferior de la primera capa y superior de la última.

En la frontera entre dos capas sucesivas, \(i \) y \(i + 1 \), con un radio \(r_{i+1} \), el desplazamiento y la tensión radial de las dos capas deben ser iguales, o sea

\[
\begin{align*}
 u^i(r_{i+1}) &= u^{i+1}(r_{i+1}) \\
 \sigma^i(r_{i+1}) &= \sigma^{i+1}(r_{i+1})
\end{align*}
\] (6.34)

Sustituyendo estos términos por las ecuaciones anteriores, 6.30 y 6.32, se obtiene las ecuaciones genéricas:

\[
\begin{align*}
 \beta^i_u A^i + \gamma^i_u B^i - \beta^{i+1}_u A^{i+1} - \gamma^{i+1}_u B^{i+1} &= \alpha^{i+1}_u - \alpha^i_u \\
 \beta^i_r A^i + \gamma^i_r B^i - \beta^{i+1}_r A^{i+1} - \gamma^{i+1}_r B^{i+1} &= \alpha^{i+1}_r - \alpha^i_r
\end{align*}
\] (6.35)

Además, en el límite inferior de la primera capa, con radio \(r_1 \), el desplazamiento \(u^1(r_1) \) y la tensión radial \(\sigma^1_r(r_1) \) depende de las condiciones particulares del sistema de unión con el eje. En general, están relacionadas por una constante de rigidez radial \(k_r \), definida en la ecuación 2.78(b) del apartado 2.4.1, que relaciona la tensión radial con el desplazamiento radial unitario. Luego, se cumple que

\[
\sigma^1_r(r_1) = k_r \frac{u^1(r_1)}{r_1}
\] (6.36)

Sustituyendo el desplazamiento y la tensión por las ecuaciones 6.30 y 6.32 queda

\[
\left[\left(\beta^1_r - \frac{k_r}{r_1} \beta^1_u \right) A^1 + \left(\gamma^1_r - \frac{k_r}{r_1} \gamma^1_u \right) B^1 \right] = - \left(\alpha^1_r + \frac{k_r}{r_1} \alpha^1_u \right)
\] (6.37)

y agrupando los términos constantes la condición de contorno se simplifica a

\[
\beta^1_{ur} A^1 + \gamma^1_{ur} B^1 = -\alpha^1_{ur}
\] (6.38)

La rigidez \(k_r \) puede tomar dos valores extremos, si es muy baja y la tensión se approxima a cero y las constantes se simplifican

\[
\sigma^1_r(r_1) = 0 \quad \Rightarrow \quad \begin{cases}
 \beta^1_{ur} = \beta^1_r \\
 \gamma^1_{ur} = \gamma^1_r \\
 \alpha^1_{ur} = \alpha^1_r
\end{cases}
\] (6.39)

Si es muy alta el desplazamiento se nulo y las constantes quedan
Para el límite superior de la última capa, de radio \(r_{n+1} \), la condición es muy simple, el rotor está siempre libre y la tensión radial es nula

\[
\sigma_r^n (r_{n+1}) = 0 \quad (6.41)
\]

Sustituyendo la tensión por la ecuación 6.23 se deduce

\[
\beta^n_r A^n + \gamma^n_r B^n = -\alpha^n_r \quad (6.42)
\]

Todas estas ecuaciones forman un sistema resoluble: tiene 2\(n \) incógnitas, dos \((A^i \) y \(B^i \)) para cada una de las \(n \) capas, y se han generado 2\(n \) ecuaciones, \(2(n - 1) \) en las fronteras entre capas y dos en el radio interior y exterior.

Para la resolver las ecuaciones 6.38 6.35 y 6.42 se escriben en forma matricial

\[
TC = F \quad (6.43)
\]

en donde \(C \) es el vector de incógnitas \(A^i \) y \(B^i \), \(T \) es la matriz de coeficientes \(\beta \) y \(\gamma \) y \(F \) es el vector de valores independientes \(\alpha \). Los vectores se forman por orden de capas

\[
C = \begin{pmatrix}
A^1 \\
B^1 \\
A^2 \\
B^2 \\
A^3 \\
B^3 \\
... \\
A^i \\
B^i \\
A^{i+1} \\
B^{i+1} \\
... \\
A^{n-1} \\
B^{n-1} \\
A^n \\
B^n
\end{pmatrix}
\]

\[
F = \begin{pmatrix}
\alpha^1_{ur} \\
\alpha^2_u - \alpha^2_r \\
\alpha^3_u - \alpha^3_r \\
... \\
\alpha^{i+1}_u - \alpha^{i+1}_r \\
\alpha^{i+1}_r - \alpha^{i+1}_r \\
... \\
\alpha^n_u - \alpha^{n-1}_u \\
\alpha^n_r - \alpha^{n-1}_r \\
-\alpha^n_r
\end{pmatrix}
\]

y la matriz de coeficientes se distribuye de la siguiente forma
6.2. APLICACIÓN A MODELOS MULTICAPA

\[T = \begin{bmatrix}
-\beta_{1}^{u} & -\gamma_{1}^{u} & 0 & 0 \\
\beta_{1}^{u} & \gamma_{1}^{u} & -\beta_{2}^{u} & -\gamma_{2}^{u} \\
\beta_{1}^{r} & \gamma_{1}^{r} & -\beta_{r}^{1} & -\gamma_{r}^{1} \\
\vdots & \vdots & \vdots & \vdots \\
\beta_{i}^{u} & \gamma_{i}^{u} & -\beta_{i+1}^{u} & -\gamma_{i+1}^{u} \\
\beta_{i}^{r} & \gamma_{i}^{r} & -\beta_{r}^{i+1} & -\gamma_{r}^{i+1} \\
\vdots & \vdots & \vdots & \vdots \\
\beta_{n}^{u} & \gamma_{n}^{u} & -\beta_{n}^{u} & -\gamma_{n}^{u} \\
\beta_{r}^{n} & \gamma_{r}^{n} & -\beta_{r}^{n} & -\gamma_{r}^{n} \\
0 & 0 & \beta_{r}^{n} & \gamma_{r}^{n}
\end{bmatrix} \] (6.45)

Resolviendo la ecuación 6.43 mediante un programa de cálculo se obtienen todas las constantes \(A^i \) y \(B^i \). Cada capa tiene unas las ecuaciones del desplazamiento radial 6.17 y de tensiones 6.19, 6.21 y 6.23 propias, donde la única variable es \(r \). Si el material de una capa es singular, con un valor de \(a \) entero, las tres primeras ecuaciones se deben sustituir por sus homólogas 6.24, 6.26 y 6.28.

6.2.4. Ejemplo de rotor multicapa

Para comprobar el sistema de cálculo de rotores multicapa se presenta a continuación un ejemplo con dos capas. Es útil, además, para ilustrar las ventajas del multicapa respecto del rotor simple y, para lo cual, se aplica al mismo rotor del ejemplo del apartado 6.1.5 pero sustituyendo la mitad de su espesor por fibra de carbono, como se indica en la figura 6.6.

La capa interna (1) es de fibra de vidrio y la (2) de fibra de carbono. En el exterior se coloca la fibra de carbono porque su módulo elástico longitudinal \(E_l = 130 \text{ GPa} \) es superior al módulo de la fibra de vidrio \(E_l = 38.6 \text{ GPa} \).

La frontera entre las capas se sitúa a 0,40 m, de manera que los radios, según la nomenclatura de la figura 6.5, son: \(r_1 = 0.30 \), \(r_2 = 0.40 \) y \(r_3 = 0.50 \) m. Se aplican los mismas
condiciones: una velocidad de 10000 rpm, un incremento de temperatura de $-100 ^\circ$C, un valor de $\varphi = 1$ y una elasticidad interior de $k_r = 0$.

![Diagrama de desplazamiento y tensiones](image)

Figura 6.7: Desplazamiento y tensiones de un rotor de dos capas, fibra de vidrio y fibra de carbono.

En la figura 6.7 se presentan los resultados de desplazamiento radial u, la tensión tangencial σ_θ y las tensiones radial σ_r y axial σ_z multiplicadas por 10. En las tensiones se identifica claramente el radio de límite de capas.

Si se comparan estos resultados con los del rotor simple de fibra de vidrio de la figura 6.3 se observan ciertas mejoras. El desplazamiento radial es menor, el valor máximo, en el radio interior, disminuye de 3,2 a 1,8 mm, lo cual es benéfico para la unión del rotor con el eje. El gráfico de la tensión tangencial ha cambiado de forma, el valor máximo situado en el radio interior ha disminuido y aparece otro máximo al inicio de la segunda capa. En el primero ha disminuido de 420 a 270 MPa, pero en el segundo ha aumentado hasta 480 MPa, incluso por encima del valor máximo del rotor simple. El gráfico de la tensión radial es totalmente distinto, el máximo de zona central, de 32 MPa, se ha sustituido por una compresión de -6 MPa en la frontera entre capas, y los valores máximos son ahora de 5 y 7 MPa en el centro de cada una de las capa. El gráfico de la tensión axial también se ha reducido, los valores extremos de 8 y -16 han pasado a 3 y $-7,5$ MPa respectivamente.

Esta variación se explica por la adaptación de los desplazamientos representada en la figura 6.4 del apartado 6.2.1. La fibra de carbono es más rígida que la fibra de vidrio y la capa exterior se dilata menos que la interior. Como se verá en los apartados siguientes este cambio supone una mejora significativa en la resistencia del rotor porque la tensión radial y la axial son más perjudiciales que la tensión tangencial.

1En los ejemplos del artículo Ripoll y Pérez Aparicio (2005) [45] se comprueba la influencia negativa de la tensión axial en rotores multicapa sobre las prestaciones finales del volante.
Para verificar estos resultados se comparan con los valores obtenidos en un cálculo mediante MEF. En las figuras 6.8 y 6.9 se muestra el modelo de la sección axial y los resultados de las tensiones.

Figura 6.8: Tensión tangencial y radial de una sección del rotor bi-capas

Figura 6.9: Tensión axial de una sección del rotor bi-capas

Se observa que la tensión tangencial prácticamente constantes en z. La tensión radial también es bastante constante, excepto en las cercanías del borde libre, $z \approx 0$, donde sufre una ligera disminución que no se aprecia en el resultado de las fórmulas. Es debido al efecto de borde de la tensión τ_{zr}, consistente en un pequeño desplazamiento radial u que se ha considerado en el apartado 4.2.7 pero se ha omitido en la deducción inicial al despreciar la derivada de u de la ecuación 4.35. Finalmente, la tensión axial también disminuye hasta hacerse nula en el borde, $z = 0$.
En la figura 6.10 se muestran estos resultados sobre los gráficos de tensiones para facilitar la comparación. Para representar los valores correspondientes a \(\varphi = 1 \) se ha elegido un radio situado en \(z = 0,4 \text{ m} \), o sea \(2t \), donde las tensiones son máximas. Se observa que la concordancia es perfecta en las tres tensiones.

6.3. Resistencia ante la rotura

6.3.1. Resistencias para el cálculo

Las tensiones determinadas en los cálculos deben compararse con el límite de resistencia del material para asegurar la ausencia del fallo y para optimizar el diseño. Los métodos de comparación nunca son exactos y menos en el caso de materiales compuestos.

En este trabajo la resistencia del material se analiza solamente bajo condiciones estáticas porque el rotor está sometido a condiciones de fatiga poco importantes. En el apartado 2.1.1 se ha comentado que las tensiones más destacadas son las originadas por la fuerza centrífuga, de forma que la oscilación de las tensiones se puede considerar que sigue el ciclo de la energía almacenada. Por lo tanto, el material está sometido a un ciclo dinámico muy poco exigente: las tensiones son siempre del mismo signo y el número de ciclos de vida muy limitado.

Dentro del cálculo estático tampoco se pretende, según los objetivos de este trabajo,
analizar a fondo los fenómenos de rotura del rotor. La predicción en materiales compuestos sometido a tensiones combinadas es bastante más compleja que los materiales metálicos, los criterios de fallo publicados dan resultados más dispares. Es un tema de actualidad sobre el que se siguen realizando estudios y publicando nuevas propuestas que se ajustan más a los resultados experimentales. Para determinar cual de ellos ofrece una predicción más ajustada a la realidad se requeriría un análisis profundo y seguramente con pruebas experimentales que se escapan del objetivo y las posibilidades de este trabajo. Aquí, solamente se pretende analizar la formación de tensiones y su repercusión sobre las líneas de diseño. La predicción de la rotura se realiza mediante cálculos convencionales en la misma línea que otras investigaciones actuales, por ejemplo, Gabrys y Bakis (1997) [17] y Christensen y DeTeresa(2003) [5].

Antes de afrontar el cálculo completo cada una de las tensiones se compara con su resistencia particular para observar de una forma simple su influencia sobre el daño del material. Este método permite dirigir los pasos del diseño previo y más adelante, en el cálculo definitivo a través del criterio de fallo, se determina la existencia o no de rotura en el rotor.

6.3.2. Resistencia individual

La comparación individual de cada tensión con su resistencia límite se realiza directamente sobre el propio gráfico de tensiones. Es evidente que no es válida para el cálculo definitivo pero ofrece una información válida para descubrir las tensiones más perjudiciales y orientar las decisiones básicas del diseño. Este sistema es utilizado por Gabrys y Bakis (1997) [17] en la presentación de su estudio de diseño óptimo.

A continuación se aplica a los resultados de los ejemplos anteriores, para lo cual se incluyen los límites de resistencia del material a los gráficos de tensiones. En el ejemplo multicapa se añade un nuevo diseño para mostrar el proceso aproximado de optimización a través del sistema gráfico.

Para la comparación se tiene en cuenta la orientación de la fibra en el rotor. La tensión en la dirección de la fibra se compara con la resistencia longitudinal del material compuesto y las dos tensiones perpendiculares a la fibra con la transversal. En los ejemplos no se aplican fibras en direcciones distintas a la tangencial (0º) o la axial (90º) descritas en el apartado 1.3.3. Tampoco comparan las tensiones cortantes porque, en condiciones habituales, son poco importantes y no afectan a la resistencia del rotor.

En primer lugar, en la figura 6.11, se aplica a las tensiones del rotor simple de un único material del ejemplo del apartado 6.1.5, cuyos resultado se han expuestos en la figura 6.3. Las resistencias de tracción y compresión del material compuesto, formado por fibra de vidrio y resina epoxi, son: 1062 MPa y 610 MPa, en dirección longitudinal, y 31 y 118 MPa, en dirección transversal. Estas tensiones límite se representan en el gráfico en forma de línea discontinua.

En los resultados de la figura 6.11 se observa que la resistencia longitudinal a tracción ($\sigma_{\text{lím}} = 1062$ MPa) es muy superior a la tensión tangencial del rotor, cuyo máximo es
Figura 6.11: Comparación de las tensiones del rotor de una capa con unas tensiones límite iguales a las resistencias del material

de 410 MPa. La resistencia transversal ($\sigma_{y\text{,lim}} = 31$ MPa) es prácticamente igual al valor máximo de la tensión radial y es muy superior a valor máximo de la tensión axial. Las tensiones negativas no es necesario compararlas porque la diferencia es mayor. Con ello se deduce que la tensión radial es la más perjudicial y el rotor se encuentra prácticamente en condiciones límite, muy próximo a la rotura. Es evidente que para mejorar el diseño del rotor el valor de esta tensión debe disminuir y, precisamente, este es el objetivo del diseño multicapa comentado en el apartado 6.2.1, o sea, reducir la tensión radial en la zona central del rotor.

La comparación en un rotor multicapa debe hacerse en cada capa por separado porque sus resistencias son distinta. En la figura 6.12 se muestra el gráfico de resistencias para el rotor de dos capas del ejemplo del apartado 6.2.4. Las resistencias de la fibra de vidrio de la primera capa son las mismas que en el ejemplo anterior, y en la fibra de carbono la resistencias de tracción y compresión son: 1800 y 1400 MPa para la dirección longitudinal y de 80 y 168 MPa para la dirección transversal.

En este caso las resistencias son muy superiores a las tensiones porque se mantienen las mismas cargas del ejemplo anterior y el diseño ha mejorado. Para facilitar la comparación las tensiones no se comparan directamente con sus resistencias sino con una resistencia disminuida o tensión límite. Éstas se obtienen dividiendo las resistencias por un factor, el mismo en todas ellas, que iguala la tensión más desfavorable a su tensión límite. Para este ejemplo el factor de reducción es de 3,7, que iguala la tensión longitudinal límite con la tensión tangencial máxima en la segunda capa.

En este rotor la tensión más desfavorable es la tangencial en la fibra de carbono, sobre el radio frontera. En cambio, la tensión radial está muy lejos de su tensión límite, el efecto multicapa la ha convertido en tensiones de compresión. La axial también es inferior a la tensión límite. En este caso tampoco se representan los límites de compresión porque están lejos de las tensiones.
Con ello se comprueba que el diseño en multicapa es mucho mejor que el rotor de material único. En la figura 6.11 la tensión más desfavorable iguala a su resistencia, con lo cual el factor de reducción es 1, mientras que en el multicapa es 3,7.

![Figura 6.12: Comparación de las tensiones del rotor de dos capas con unas tensiones límite 3.7 veces inferiores a las resistencias.](image)

A pesar de la mejora en este primer diseño en multicapa se pueden otras configuraciones mejores. El rotor está formado por dos capas iguales y variando el radio frontera entre capas varía también la distribución de tensiones. Para hallar el radio que da lugar a un factor de reducción máximo es necesario un proceso de optimización, que en este caso no es perfecto porque se utiliza un criterio de decisión del fallo incompleto.

Para mejorar la resistencia, teniendo en cuenta los resultados de la figura 6.12, debe disminuir la tensión tangencial en la segunda capa. Aunque, ahora las mejoras son más difíciles que en el caso anterior, porque la tensión tangencial es esencial para la fuerza centrífuga, en cambio, la tensión radial es secundaria y solamente se crea accidentalmente debido a las diferencias de desplazamiento.

Si el radio frontera es menor la tensión tangencial en la segunda capa, manteniendo la velocidad de giro, disminuye ligeramente. Esta variación tiene un límite porque la tensión radial en el centro de la capa aumenta. Después de sucesivos tanteos se determina el radio óptimo aproximado de 0,35 m. En la figura 6.13 se presentan las nuevas tensiones y los valores tensiones límite con un factor de reducción de 4.

En la figura 6.13 se observa que la comparación en la tensión tangencial tiene una forma parecida al ejemplo anterior, en cambio, la tensión radial de la segunda capa se iguala prácticamente con la tensión límite. Con respecto al ejemplo anterior el factor de reducción aumenta de 3,7 hasta 4 y la mejora en este caso es muy limitada. Ahora el punto crítico es doble, la tensión tangencial de 450 MPa y la tensión radial de unos 20 MPa, ambos en la segunda capa. En este sentido el diseño está optimizado, dentro del límite
Figura 6.13: Con la optimización de los radios del rotor de 2 capa las tensiones llegan a ser 4 veces inferiores a las resistencias.

aproximado del método, porque cualquier modificación en las dimensiones puede mejorar un los puntos pero empeoraría el otro.

6.3.3. Criterio de fallo

Para el cálculo final se han examinado cuatro criterios de fallo posibles: Tsai-Wu, Hashin, Christensen y Puck. Están descritos y analizados en Pérez-Aparicio y otros (2005) [38] y, entre ellos, se ha elegido el criterio de Christensen (1997) [7]. Es más realista que el de Tsai-Wu, a pesar de ser quizás el más citado en la bibliografía para cálculo de rotores. El criterio de Christensen separa el fallo de la matriz del fallo de la fibra, que en el caso de laminados unidireccionales y con tensiones longitudinales y transversales quedan claramente diferenciados. Con respecto a los otros dos criterios no ofrece unas ventajas claras.

En esta discusión hay que tener en cuenta que la elección del criterio es importante para determinar el límite de las prestaciones de un rotor, pero no lo es tanto para comparar distintas configuraciones del rotor. Así que, para el objetivo de este trabajo es poco relevante la elección del criterio y las conclusiones finales variarían poco si se empleara un criterio distinto.

En la figura 6.14 se representan la notaciones de las tensiones normales y cortantes con respecto a la dirección de las fibras. A cada uno de ellas el material tiene un límite de resistencia a tracción (t) y a compresión (c), designados por

\[
\begin{array}{cccccc}
\sigma_{1(t)} & \sigma_{1(c)} & \sigma_{2(t)} & \sigma_{2(c)} & \sigma_{5} & \sigma_{6} \\
X & X' & Y & Y' & S
\end{array}
\]

(6.46)

La tensión \(\sigma_4 \) no se aplica porque en los rotores es muy baja.
6.3. RESISTENCIA ANTE LA ROTURA

Según el criterio de Christensen el fallo en la matriz viene dado por la ecuación:

\[\alpha_1 k_1 (\sigma_2 + \sigma_3) + (1 + 2\alpha_1) \left[\frac{1}{4} (\sigma_2 - \sigma_3)^2 + \sigma_1^2 \right] + \beta (\sigma_6^2 + \sigma_5^2) \leq k_1^2 \] (6.47)

\[k_1 = \frac{Y'}{2} ; \quad \alpha_1 = \frac{1}{2} \left(\frac{Y'}{Y} - 1 \right) ; \quad \beta = \left(\frac{Y'}{2S} \right)^2 \] (6.48)

y en la fibra por la expresión:

\[-\alpha_2 k_2 \sigma_1 + \frac{1}{4} (1 + 2\alpha_2) \sigma_1^2 - \frac{(1 + \alpha_2)^2}{4} (\sigma_2 + \sigma_3) \sigma_1 \leq k_2^2 \] (6.49)

\[k_2 = \frac{X}{2} ; \quad \alpha_2 = \frac{1}{2} \left(\frac{X}{X'} - 1 \right) \] (6.50)

Los parámetros \(k_1 \) y \(k_2 \) representan la resistencia del material compuesto a compresión transversal y tensión longitudinal respectivamente, mientras que \(\alpha_1 \) y \(\alpha_2 \) son medidas de la diferencia de resistencia entre tracción y compresión.

La rotura aparece cuando se produce la igualdad en la ecuación 6.47 o en la ecuación 6.49. Si ésta no se produce a la relación entre el segundo y el primer término de las ecuaciones se llama factor o índice de rotura. Su valor oscila entre cero y uno, si es próximo a cero significa que tiene la máxima seguridad y si vale uno que está en el límite de rotura.

En los ejemplos del apartado siguiente, además del factor de rotura calculado por el criterio de Christensen, se incluye el según el criterio de Tsai-Wu porque es el más tradicional y muy utilizado por otros autores. Con ello, se tiene un punto de referencia y se puede comparar con los resultados de otros trabajos. En los próximos capítulos solamente se utiliza el criterio de Christensen.

6.3.4. Ejemplos

En este apartado se determinan los factores de rotura de los tres ejemplos del apartado anterior. Su geometría, las cargas aplicadas y, por lo tanto, las tensiones son las mismas.
Se aplica el criterio de Christensen, aunque también se añade el resultado del criterio de Tsai-Wu.

Los resultados del rotor unicapa de fibra de vidrio se presentan en la figura 6.15, en el gráfico (a) las tensiones y en el (b) el factor de rotura. Se observa que los puntos más desfavorables se hallan en la zona central, donde el valor del factor de rotura sobrepasa la unidad. Este resultado es muy coherente con la conclusión de la comparación individual de la figura 6.11.

![Figura 6.15: Tensiones y factor de rotura en un rotor simple a 10000 rpm.](image)

Cabe destacar que los valores del factor de rotura en ambos criterios son sensiblemente distintos, en el punto máximo la diferencia es del 20%. Ambos son próximos a la unidad, aunque según Christensen rompe y según Tsai-Wu queda un cierto margen de seguridad. Esto se explica porque son conceptualmente distintos, el criterio de Tsai-Wu es una función ponderada de todas las tensiones, de ahí que el perfil no tenga puntos de inflexión, en cambio el de Christensen distingue el modo de fallo y da lugar cambios bruscos de la pendiente. Este último es el más fiable porque, como se ha comentado, se adapta mejor al tipo de rotura de un rotor.

Los resultados del ejemplo multicapa de dos capas con igual grosor se muestran en la figura 6.16. Coincidiendo con el apartado anterior el punto más desfavorable está en la segunda capa, en el radio frontera. Si se compara con el resultado del rotor monocapa el factor disminuye a la cuarta parte, según el criterio de Christensen, que también se aproxima al valor del apartado anterior.

En este caso también existe cierta diferencia entre ambos, pero ahora el resultado del criterio de Tsai-Wu es más elevado que el de Christensen. Su explicación puede estar en el tipo de rotura, ahora la tensión tangencial es la más perjudicial y la rotura se produce en dirección longitudinal a las fibras.

Los resultados del rotor multicapa optimizado, con capas de distinto espesor, se muestran...
6.3. RESISTENCIA ANTE LA ROTURA

en la figura 6.17. El punto más desfavorable sigue siendo en la segunda capa en el radio frontera y el factor de rotura mejora respecto del anterior, diminue de 0,26 a 0,23. En este caso también el resultado del criterio de Tsai-Wu es algo superior al de Christensen.

![Figura 6.16: Tensiones y factor de rotura para el rotor de 2 capas.](image1)

![Figura 6.17: Tensiones y factor de rotura para el rotor de 2 capas optimizado.](image2)

Estos resultados de resistencia son más precisos que las simples comparaciones del apartado anterior y, por lo tanto, son concluyentes para el cálculo del rotor. No obstante, en los gráficos individuales se aprecia mejor la causa de la rotura y es más fácil dirigir las modificaciones hacia la mejora del diseño óptimo, tal como se comprueba en el ejemplo del rotor de dos capas.
CAPÍTULO 6. FORMULACIÓN GENERAL Y MODELOS MULTICAPA
Capítulo 7

PRETENSADO EN EL BOBINADO

7.1. Proceso de pretensado en el bobinado

7.1.1. Mejora de tensiones mediante las tensiones residuales

En el capítulo anterior se ha estudiado el efecto global de las tensiones sobre la resistencia del rotor y se describe el sistema de mejora más usual basado en la configuración multicapa. En este capítulo y el siguiente se estudian otras formas de mejora a partir de las tensiones residuales.

Las tensiones residuales tienen distinto signo según su origen, y se suman o se restan a las tensiones de la fuerza centrífuga. Las de origen térmico se suman y son perjudiciales, en cambio, las de hidratación son de signo contrario y disminuyen la tensión final. Estas últimas tienen el inconveniente que no son permanentes, aparecen lentamente con el tiempo, y no son aptas para aumentar la velocidad del rotor.

Existen otras tensiones residuales, no estudiadas anteriormente, de tipo mecánico que se generan durante el proceso bobinado de la fibra. Son de signo contrario a las centrífugas y, por lo tanto, se pueden aplicar para disminuir las tensiones finales del rotor.

En este capítulo se describe el proceso de formación de las tensiones de bobinado y se elabora un modelo de cálculo para determinar las tensiones generadas. En su análisis se considera, para una primera aproximación, que el material es elástico y, posteriormente, se complementa con las modificaciones experimentales de sus propiedades.

7.1.2. Tensiones residuales de bobinado

En el estudio de las tensiones realizado hasta el momento no se han considerado las tensiones residuales de bobinado. Su origen es totalmente distinto a las tensiones residuales generadas por el material, nacen de la simple acción mecánica del tensado del hilo
durante el bobinado. Aunque algunas veces se habla de hilo en realidad se refiere a un conjunto de hilos o filamento, formado por centenares de hilos de diámetro muy pequeño, como se muestra en la figura 7.1(c).

En la fabricación de un rotor siempre es necesaria una cierta tensión en el hilo para asegurar el correcto apilado de las fibras. En la figura 7.1(a) se representa el proceso de enrollado con una tensión de bobinado \(\sigma_w \) en el hilo de entrada que se compensa con un momento de giro \(M \) en el mandrino. La tensión \(\sigma_w \) del filamento crea una presión radial \(p_w \) contra la superficie para adaptarse a la curvatura cilíndrica, figura 7.1(b) y (c). Esta presión es necesaria para el material porque evita que en la zona de apoyo se formen pequeñas bolsas de aire que perjudicarían la uniformidad del compuesto. También favorece el aumento de la concentración de fibra porque la presión entre los hilos favorece que la resina fluya hacia el exterior y se reduce la distancia entre fibras. Por lo tanto, la tensión de bobinado aumenta la resistencia a tracción del material bobinado, como exponen Hahn y Kempner (1993) [23].

![Figura 7.1: Fabricación de un rotor con una tensión de bobinado \(\sigma_w \) y generación de la presión radial \(p_w \).](image)

La tensión de bobinado \(\sigma_w \) permanece en las fibras internas del rotor en forma de tensión tangencial, incluso después de suspender la tensión exterior de la última vuelta, debido a la fricción entre hilos y la elasticidad del material. Por la misma razón, la presión \(p_w \) entre las fibras también permanece en el interior del rotor en forma de tensión radial. Estas dos tensiones, la tangencial y la radial, dan lugar a las tensiones residuales de bobinado.

En un proceso de bobinado convencional, con una tensión de hilo relativamente baja, se generan tensiones internas despreciables, pero si la tensión es elevada se generan tensiones residuales importantes que modifican el comportamiento final del rotor. En su interior se combina la tracción de las fibras con la compresión de la matriz dando lugar a un estado de precompresión similar al que se genera en el interior del hormigón pretensado. A este tipo de tensiones residuales se les puede denominar, por similitud con el hormigón, tensiones de pretensado.
7.1.3. Ventajas del pretensado

Al bobinar un rotor con hilo fuertemente traccionado puede parecer, en una primera intuición, que disminuye la capacidad para resistir la fuerza centrífuga, pero en un estudio más detallado se demuestra que en realidad aumenta. A continuación de describe el proceso de formación de tensiones residuales de pretensado y se comprueba que disminuyen las tensiones finales del rotor.

Si a un cilindro de material compuesto se le añade una capa exterior del mismo material bobinando con hilo tenso se generan las tensiones internas de la figura 7.2. Sobre el cilindro base, que actúa de mandrino en la figura 7.2(a), se enrollan vueltas sucesivas de hilo con tensión σ_w hasta completar la capa. Esta tensión permanece en el cilindro exterior en forma de tensión tangencial σ_θ de tracción, como se muestra en la sección radial de la figura 7.2(b), y genera otra compresión en el cilindro base, necesaria para mantener el equilibrio de fuerzas. Entre ambos cilindros se crea, a su vez, una presión p de contacto para mantener el equilibrio en cada uno de ellos, figura 7.2(c). En consecuencia, el bobinado genera una tensión radial de compresión σ_r de valor p en la frontera y decrece hasta anularse en los radios extremos, figura 7.2(d).

![Figura 7.2: Tensión tangencial y radial creadas por la tensión de bobinado.](image)

Si se comparan estas tensiones con los resultados del ejemplo del capítulo anterior, figuras 6.3 y 6.11, se comprueba que sus efectos son beneficiosos. En la tensión radial, la compresión generada en el pretensado disminuye la tracción de la fuerza centrífuga. En la tensión tangencial, la compresión del cilindro interior también disminuye la tracción de la centrífuga, en cambio, la tracción del cilindro exterior se suma a la tensión centrífuga. En este punto, a pesar de aumentar la tensión, no se perjudica la resistencia del rotor porque no es crítico, como se comprueba en la figura 6.15.

Los valores de estas tensiones se determinan más adelante, en los apartados 7.2.3 y 7.2.5, y se analiza su influencia sobre las prestaciones finales del rotor. Además del cálculo de tensiones con propiedades elásticas se introduce la corrección debido al comportamiento viscoelástico del material, en la sección 7.4.
7.1.4. Fabricación con pretensado

Antes de afrontar el estudio analítico de las tensiones residuales de bobinado es necesario exponer una serie de consideraciones sobre el proceso de fabricación.

Los rotores de material compuesto se fabrican mediante el bobinado del hilo sobre mandrino rígido, como se representa en la figura 7.1(a). El mandrino gira a velocidad constante sobre su eje y tira del hilo a través un punto exterior. Dicho punto tiene dos mecanismos, uno de desplazamiento axial, para rellenar por igual todo el ancho del cilindro, y otro de rozamiento del hilo, para crear la tensión de bobinado. Este rozamiento es regulable, mediante un sistema de pesos, y permite modificar la tensión del hilo σ_w.

El filamento de bobinado del rotor puede presentar dos formas: hilos impregnados de resina húmeda y cinta con resina seca. En el primero el filamento se sumerge en resina líquida inmediatamente antes de depositarse sobre el cilindro, mientras que en el segundo se ha sometido previamente a un proceso de impregnado y curado parcial, de manera que durante el bobinado presenta un aspecto de cinta sólida. En ambos sistemas se obtiene un resultado final muy parecido, excepto en las tensiones de pretensado.

En el bobinado con filamento húmedo las tensiones residuales de pretensado se relajan fácilmente a causa de la resina viscosa, en cambio, con cinta seca de mayor rigidez son más estables. Para el cálculo, estas últimas se modelizan fácilmente, basta con aplicar un coeficiente de corrección al modelo elástico para introducir el comportamiento viscoelástico. En el filamento húmedo las ecuaciones del sistema elástico es totalmente insuficiente y es necesario recurrir a unas ecuaciones más complejas, como se expone en el artículo de Kempner y Hahn (1995) [26].

7.1.5. Rigidez radial

Las tensiones residuales de bobinado, aunque se generan por la tensión tangencial, dependen en gran parte de la rigidez radial del material. La tensión tangencial en la capa externa de la figura 7.2(b) se mantiene gracias a la presión radial p sobre la capa interna, figura 7.2(c), pero si tiene poca rigidez radial la presión disminuye y la tensión tangencial se relaja.

Los materiales compuestos siempre tienen una rigidez en dirección transversal a la fibra muy inferior a la longitudinal, pero si la matriz no está curada esta diferencia es mucho mayor. Esto supone una grave dificultad para conservar las tensiones residuales de bobinado desde el momento de su fabricación hasta el curado completo de la matriz en el autoclave.

parámetros que tienen en cuenta la pérdida de rigidez transversal.

Aquí se sigue el mismo procedimiento, primero se desarrolla un sistema de cálculo basado en un modelo elástico y, posteriormente, se aplican las consideraciones viscoelásticas para la pérdida de rigidez radial. Con ello, se consigue analizar con detalle el mecanismo de generación de tensiones y sentar las bases de la simulación para el cálculo.

7.2. Modelo elástico

7.2.1. Proceso de estudio de las tensiones

Para determinar las tensiones del rotor originadas por la tensión del hilo es necesario crear un modelo que simule la mecánica del bobinado. Como se ha dicho, en este primer cálculo se considera que durante el bobinado el material es elástico y sus propiedades coinciden con las del material curado.

En el apartado 7.1.3 se ha descrito brevemente el origen de la tensión tangencial y la radial a partir de la tensión de bobinado σ_w. En la figura 7.2 se ha mostrado el proceso de forma global, pero para entender las tensiones finales es necesario dividirlo en pasos elementales, vuelta a vuelta.

Aunque la tensión del hilo σ_w sea constante en todo el bobinado la tensión tangencial residual no es uniforme como se ha presentado en la figura 7.2. Su valor disminuye progresivamente al acumularse encima sucesivas vueltas de bobinado. Esta relajación de la tensión residual es inherente al proceso de fabricación por bobinado y es distinta a la relajación originada por el comportamiento viscoelástico del material que se estudiará más adelante.

La tensión tangencial se determina mediante la suma de tensiones elementales. Cada vuelta de bobinado con tensión σ_w ejerce una presión radial sobre el resto del cilindro, denominada p_w en la figura 7.1, y se induce una pequeña tensión tangencial de compresión, igual que en la figura 7.2, pero con un cilindro exterior de grosor muy pequeño.

En la figura 7.3 se muestran las tensiones tangenciales parciales de las dos primeras vueltas (1) y (2), la última (n) y la suma final de todas ellas. En la primera vuelta, figura 7.3(a), la tensión σ_w comprime sólo el cilindro base, en la segunda, figura 7.3(b), σ_w comprime el cilindro base más la primera vuelta, y sucesivamente hasta la última que comprime las $n - 1$ anteriores.

La tensión tangencial final se obtiene sumando las tensiones de todas las vueltas, figura 7.3(d). En el radio exterior conserva la tensión de bobinado σ_w de la última vuelta, pero en cualquiera de las otras a la tensión σ_w se le restan las compresiones de las vueltas bobinadas posteriormente. En el cilindro base se acumulan las n compresiones.

Luego, la tensión de bobinado σ_w no se convierte directamente a tensión tangencial sino que se relaja debido a la superposición de vueltas de bobinado. Esta secuencia es útil para calcular las tensiones residuales finales y es el fundamento del modelo elástico aplicable a
rotores de un solo material. Si el rotor es multicapa, con materiales diferentes, el sistema es más complejo y en apartado 7.2.5 desarrolla un modelo generalizado aplicable para cualquier disposición de materiales.

7.2.2. Modelo analítico

El cálculo de tensiones residuales de bobinado se realiza solamente en condiciones de tensión plana, porque presenta una ecuación matemática de resolución asequible; en condiciones deformación plana o en DAC daría lugar a una ecuación diferencial muy compleja. En los capítulos anteriores se ha comprobado que los resultados de TP y de DAC difieren poco, a excepción de la tensión axial, y se supone que la similitud se conserva también aquí. Además, el error en los valores finales causados por del método de cálculo es pequeño comparado con la imprecisión en los valores de las propiedades del material no curado.

A pesar de obtener las tensiones residuales a partir de un cálculo en TP se determina un valor de tensión axial aproximado para los puntos alejados del extremo. Se supone que los valores de la tensión tangencial y la radial son muy similares a los que se obtendrían en DAC, tal como se ha comprobado en los capítulos anteriores para otros casos. Con esta aproximación se determina el valor de la tensión axial mediante la fórmula de DAC.

El sistema de cálculo se basa en simular analíticamente el proceso de formación gradual de la capa pretensada como una superposición de la n vueltas del bobinado, igual que en la figura 7.3. Las tensiones de cada una son similares a las generadas en un ajuste por interferencia de dos cilindros, el exterior es un aro fino correspondiente a la vuelta de hilo bobinado y el interior es el cilindro base más las vueltas anteriores. El aro exterior debe tener una tensión tangencial igual a la tensión del hilo σ_w, y genera la presión de
7.2. MODELO ELÁSTICO

contacto p_w de la figura 7.1.

Para la simulación se supone que el espesor de una vuelta es de valor infinitésimo, así en un determinado el radio de bobinado r_w se añade un aro de grosor diferencial, dr_w, tal como se representa en la figura 7.4(b). El aro está sometido a una tensión tangencial σ_w y ejerce sobre el cilindro una presión diferencial dp_w. El cilindro recibe esta presión en forma de tensión radial $d\sigma_r$, superficial y en su interior se genera una tensión tangencial de compresión $d\sigma_\theta$, figura 7.4(a).

Este modelo sustituye la forma espiral del hilo por sucesivos anillos cerrados sobre sí mismos e independientes del resto. Considera que en todos los puntos de la última vuelta tiene una tensión tangencial uniforme, por lo cual, las tensiones cortantes entre ella y la vuelta anterior son nulas. Finalmente, supone que las tensiones son idénticas en toda su longitud axial, o sea, el aro tiene la misma longitud que el rotor.

![Figura 7.4: Modelo elemental de cálculo de tensiones de bobinado para una tensión de hilo σ_w.](image)

El anillo diferencial se comporta como un cilindro de pared delgada sometido a presión interior dp_w, figura 7.4(b), y una tensión tangencial σ_w que se relacionan según la fórmula

$$dp_w = \frac{\sigma_w \, dr_w}{r_w} \tag{7.1}$$

El cilindro interior se comporta como un cilindro sometido a presión exterior, $d\sigma_r = dp_w$, y en sus puntos interiores se crean tensiones tangenciales y radiales. Las tensiones totales del rotor se obtienen sumando las tensiones de los sucesivos anillos diferenciales según la configuración del rotor.

7.2.3. Rotor de un solo material

A continuación se resuelve el caso de un rotor simple de material único en el que la zona exterior está bobinada con tensión. Se fabrica en dos fases, primero el cilindro interior, de r_1 y r_2 en la figura 7.5, y posteriormente se añade la capa pretensada, de r_2 y r_3. El cilindro interior se obtiene mediante un bobinado convencional sobre un mandrino
Figura 7.5: Rotor de material único con una capa de pretensado dividida en anillos diferenciales.

metálico que se retira después del curado. Sobre este cilindro base se bobina la capa pretensada aplicando la tensión de hilo descrita de la figura 7.2.

A la capa tensada se le aplica el modelo de aro con espesor diferencial \(dr_w \) del apartado anterior, con el radio \(r_w \) entre \(r_2 \) y \(r_3 \), figura 7.5. Este aro diferencial se apoya sobre un cilindro interior, \(r_i \) y \(r_w \) de la figura 7.4(a), de material homogéneo, en el cual el radio interior es constante, \(r_i = r_1 \). Ambos están sometidos las tensiones de la figura 7.4 y cumplen la ecuación 7.1.

La tensión tangencial y radial del cilindro interior se calculan con las ecuaciones de un cilindro de pared gruesa sometido a una presión exterior, \(dp_w \). Para ello se utilizan las propias ecuaciones generales 6.17, 6.19 y 6.21 pero con las siguientes simplificaciones: \(\varphi = 0 \) para simular condiciones de TP, sin los términos debidos a la fuerza centrífuga y los efectos térmicos y de hidratación. Quedan reducidas a

\[
\begin{align*}
 u(r) &= A \frac{1}{r^a} + B r^a \\
 \sigma_\theta(r) &= H_A A \frac{1}{r^{a+1}} + H_B B \ r^{a-1} \\
 \sigma_r(r) &= R_A A \frac{1}{r^{a+1}} + R_B B \ r^{a-1}
\end{align*}
\]

(7.2)

El cilindro tiene aplicada solamente una presión exterior en las condiciones de contorno. De la figura 7.4 y la ecuación 7.1 se deduce

\[
\begin{align*}
 r &= r_1 ; \quad \sigma_r = 0 \\
 r &= r_w ; \quad \sigma_r = \frac{\sigma_w \ dr_w}{r_w}
\end{align*}
\]

(7.3)

Estas condiciones afectan a los coeficientes \(A \) y \(B \) y se determinan con la ecuación 7.2(c)
7.2. MODELO ELÁSTICO

\[A = \frac{\sigma_w r_1^a r_w^a \, dr_w}{R_A \left(\frac{r_w^a}{r^2_a} - \frac{r_1^a}{r_1^a} \right)} \]

\[B = -\frac{\sigma_w r_w^a \, dr_w}{R_B \left(\frac{r_w^a}{r^2_a} - \frac{r_1^a}{r_1^a} \right)} \quad (7.4) \]

Aplicando estos valores a las ecuaciones 7.2 se obtiene el desplazamiento y las tensiones diferenciales correspondientes a la presión exterior \(dp_w \):

\[
\begin{align*}
\, du(r) & = \sigma_w \left(\frac{r_1^a}{R_A} - \frac{r^a}{R_B} \right) \frac{r_w^a \, dr_w}{r_w^a - r_1^a} \\
\, d\sigma_\theta(r) & = -\sigma_w \, a \left(\frac{r_1^a}{r^a+1} + r^{a-1} \right) \frac{r_w^a \, dr_w}{r_w^a - r_1^2} \\
\, d\sigma_r(r) & = \sigma_w \left(\frac{r_1^a}{r^a+1} - r^{a-1} \right) \frac{r_w^a \, dr_w}{r_w^a - r_1^2}
\end{align*}
\]

\[(7.5) \]

Su resolución es distinta en el cilindro base y en la zona pretensada. En cilindro base, con un radio \(r \) entre \(r_1 \) y \(r_2 \) de la figura 7.5, el radio de bobinado \(r_w \) varía entre los valores extremos \(r_2 \) y \(r_3 \) y la solución es:

\[
\begin{align*}
\, u(r) & = \sigma_w \left(\frac{r_1^a}{R_A} - \frac{r^a}{R_B} \right) I_w(r_2, r_3) \\
\, \sigma_\theta(r) & = -\sigma_w \, a \left(\frac{r_1^a}{r^a+1} + r^{a-1} \right) I_w(r_2, r_3) \\
\, \sigma_r(r) & = \sigma_w \left(\frac{r_1^a}{r^a+1} - r^{a-1} \right) I_w(r_2, r_3)
\end{align*}
\]

\[(7.6) \]

en donde \(I_w(r_2, r_3) \) es la integral

\[I_w(r_2, r_3) = \int_{r_2}^{r_3} \frac{r_w^a}{r_w^a - r_1^2} \, dr_w \quad (7.7) \]

En la zona de pretensado, cuando \(r \) es superior a \(r_2 \), la solución es función solamente de las vueltas bobinadas por encima de \(r \), o sea, el radio de bobinado \(r_w \) varía desde el propio radio \(r \) hasta \(r_3 \). La solución es muy parecidas a las ecuaciones anteriores excepto para la tensión tangencial \(\sigma_\theta \). En ella el valor inicial es la tensión de pretensado \(\sigma_w \), como se observa en la figura 7.3:

\[
\sigma_\theta(r) = \sigma_w - \int_r^{r_3} \sigma_w \, a \left(\frac{r_1^a}{r^a+1} + r^{a-1} \right) \frac{r_w^a \, dr_w}{r_w^a - r_1^2}
\]

\[(7.8) \]

Luego, las ecuaciones del desplazamiento y las tensiones para la zona de pretensado son:

\[\text{...} \]
\[u(r) = \sigma_w \left(\frac{r^{2a}}{R_A} - \frac{r^a}{R_B} \right) I_w(r, r_3) \]

\[\sigma_\theta(r) = \sigma_w \left[1 - a \left(\frac{r^{2a}}{r^{a+1}} + r^{a-1} \right) I_w(r, r_3) \right] \] \hspace{1cm} (7.9)

\[\sigma_r(r) = \sigma_w \left(\frac{r^{2a}}{r^{a+1}} - r^{a-1} \right) I_w(r, r_3) \]

y la integral con los límites \(r \) y \(r_3 \) vale

\[I_w(r, r_3) = \int_r^{r_3} \frac{\varphi}{r^{2a}} \frac{2a}{r^{2a} - r^{2a}} dr_w \] \hspace{1cm} (7.10)

Las integrales de las ecuaciones 7.7 y 7.10 no tienen una fórmula primitiva simple, válida para todos los valores de \(a \). Su resolución se comenta más adelante en la ecuación 7.19, porque es igual pero el factor independiente \((r^{2a}) \) es más genérico.

La tensión axial \(\sigma_z \) se determina a partir de la ecuación 6.23, eliminando los términos de temperatura y humedad. Los valores de la tensión tangencial \(\sigma_\theta \) y la radial \(\sigma_r \) deberían ser de DAC pero se utilizan, como se ha comentado más arriba, los resultados anteriores obtenidos en TP. Luego, la tensión axial aproximada para el cilindro base y para la zona bobinada se calcula con la ecuación

\[\sigma_z(r) = \varphi \left[\nu_{\theta z} \sigma_\theta + \nu_{rz} \sigma_r + E_z \varepsilon_z^u \right] \] \hspace{1cm} (7.11)

La deformación axial \(\varepsilon_z^u \) se determina con el mismo sistema iterativo del apartado 4.1.4, aplicando la tensión axial a las ecuaciones 4.13 y 4.14 hasta obtener una fuerza axial suficientemente baja.

7.2.4. Ejemplo de un rotor de un solo material

A continuación se presentan los resultados de un rotor de material único con una capa pretensada. Se elige el mismo ejemplo que los capítulos anteriores, de fibra de vidrio con radios \(r_i = 0.3 \) y \(r_e = 0.5 \) m, al que se le aplica una tensión de bobinado \(\sigma_w = 50 \) MPa a partir de \(r = 0.4 \) m. Se supone que las propiedades del material son siempre las del material curado del capítulo anterior, \(E_L = 38.6 \) y \(E_T = 8.27 \) MPa y \(\nu_{TL} = 0.26 \) y \(\nu_{TT} = 0.6 \). Las resistencias longitudinales, tracción y compresión, son \(X = 1062 \) y \(X_c = 610 \) y las transversales \(Y = 31 \) y \(Y_c = 118 \) MPa.

En la figura 7.6 se presentan los resultados del desplazamiento y las tensiones residuales después del bobinado para una posición axial alejada del extremo. El desplazamiento es negativo en la zona interior y aumenta hasta cero en el exterior. Este valor debe ser necesariamente cero porque el proceso de bobinado se detiene en \(r_e \). La tensión tangencial es positiva en la zona exterior y negativa en la interior, tal como se ha expuesto en la
7.2. **MODELO ELÁSTICO**

figura 7.2. En el radio exterior tiene un valor de 50 MPa y decrece con la distancia debido al fenómeno de relajación de tensiones de la figura 7.3. La compresión radial es máxima en la frontera con un valor de −8,8 MPa y la tensión axial tiene poca importancia. Ambas son de signo contrario a las de origen centrífugo, como se puede comprobar comparando con la figura 6.3.

![Figura 7.6: Desplazamiento radial y tensiones en un rotor de fibra de vidrio con una capa pretensada](image)

Para valorar el efecto del pretensado en el rotor se comparan los resultados del rotor sin pretensado del apartado 6.3.4. Todos los datos son iguales excepto la velocidad, que se ha disminuido a 9670 rpm, para que el factor de rotura del rotor sin pretensado sea unitario y facilita la comparación. En la figura 7.7 se presentan los gráficos de tensiones y el factor de rotura según el criterio de Christensen de un rotor convencional y un rotor con pretensado.

En el gráfico de tensiones se observa que la variación absoluta no es muy importante pero en el gráfico del factor de rotura se comprueba que su influencia sobre la resistencia final es significativa. Su valor máximo, en la zona central, a mejorado a causa de la disminución de la tensión radial.

En este ejemplo se comprueba que la técnica del pretensado es buena para mejorar las prestaciones de un rotor de pared gruesa porque modifica las tensiones en el punto débil del rotor. Pero estos resultados no son reales porque se ha considerado que el material tiene propiedades elásticas, los valores definitivos son más reducidos aunque dependen mucho de la fabricación.
7.2.5. Rotor de varios materiales

Si el rotor está formado por varias capas de distinto material no son aplicables las ecuaciones anteriores. Las constantes A y B de la ecuación 7.4 son válidas sólo si el cilindro base (r_1, r_2) y la capa bobinada (r_2, r_w) tienen las mismas propiedades. Si el rotor tiene al menos dos materiales debe plantearse como un caso genérico que se presenta a continuación.

En un rotor multicapa de n capas, enumeradas desde el interior según la figura 6.5, puede haber una o varias capas bobinadas con pretensado. Lo más lógico es que sea la capa más externa n, aunque en algunos casos podría interesarse pretensar una capa intermedia cualquiera i. Si es la externa n se ejerce presión sobre las $n-1$ capas restantes, pero si es una capa intermedia i se comprimen sólo las $i-1$ inferiores.

En el cálculo de tensiones residuales creadas por una capa i pretensada intervienen solamente la propia capa i y las $i-1$ capas inferiores, tal como se muestra en la figura 7.8(a). El proceso de cálculo tiene tres pasos: (1) sustituir las $i-1$ capas inferiores por un cilindro equivalente, (2) determinar las tensiones de pretensado dentro de la capa i y (3) calcular las tensiones en las capas inferiores.

El cilindro equivalente de las $i-1$ capas inferiores es un sistema elástico que sufre el mismo desplazamiento radial u^i cuando está sometido a una tensión radial exterior σ_r^i. Analíticamente equivale a determinar la constante elástica radial k_r^i definida en la ecuación 2.78 del aparado 2.4.1, pero en el radio r_i de la capa i y se denominada k_r^i en la figura 7.8(b).

$$k_r^i = \frac{\sigma_r^i}{\frac{u}{r_i}}$$ (7.12)
Las tensiones en la capa de pretensado se calculan con el mismo proceso de apilado de aros diferenciales del apartado anterior. La capa pretensada, de r_i a r_{i+1}, se divide en aros de radio r_w y espesor diferencial dr_w, como muestra la figura 7.8(b). Cada uno ejerce una presión diferencial dp_w sobre el cilindro interno de radio r_w, formado por el cilindro equivalente, k^i_r, más la parte bobinada, de r_1 a r_w.

Figura 7.8: Progresión del aro diferencial de bobinado en un rotor multicapa

Para el cálculo se aplican las ecuaciones 7.2 anteriores, pero con unas nuevas constantes A y B. La tensión radial en el radio inferior σ^i_r depende del desplazamiento u^i_r y de la constante elástica del cilindro equivalente k^i_r. En el radio de bobinado r_w la tensión radial es la misma que en el caso anterior

$$\begin{align*}
&\begin{cases}
 r = r_i \Rightarrow \sigma^i_r = \frac{k^i_r u^i_r}{r_i} \\
 r = r_w \Rightarrow \sigma_r = \frac{\sigma_w}{r_w} \frac{dr_w}{r_w}
\end{cases}
\end{align*}$$

(7.13)

Los nuevos coeficientes son

$$\begin{align*}
A &= -\frac{\sigma_w m v^a_w dr_w}{R_A r_w^a + \eta} \\
B &= -\frac{\sigma_w v^a_w dr_w}{R_B r_w^a + \eta}
\end{align*}$$

(7.14)

en donde el factor η resume algunos parámetros independientes del punto de bobinado r_w y vale:

$$\eta = v^a_w R_A - k^i_r R_B$$

(7.15)

También se puede escribir, según las ecuaciones 6.22, 6.13 y 6.9, en función directa de las propiedades elásticas del material.
\[
\eta = r^2 r^2 E_0 - k_v^2 (a - \nu_{\theta r}) \frac{E_0 + k_v^2 (a + \nu_{\theta r})}{(E_0 + k_v^2 (a + \nu_{\theta r}))} \] (7.16)

Sustituyendo las constantes \(A \) y \(B \) en las ecuaciones 7.2 se obtienen los valores diferenciales

\[
du(r) = -\sigma_w \left(\frac{\eta}{R_A} \frac{1}{r^a} + \frac{r^a}{r^a + \eta} \right) \frac{r^a u_w dr_w}{r^a + \eta} \\
d\sigma_w(r) = -\sigma_w \left(\frac{\eta}{r^a + 1} + r^{a-1} \right) \frac{r^a u_w dr_w}{r^a + \eta} \] (7.17)

\[
d\sigma_r(r) = -\sigma_w \left(\frac{\eta}{r^{a+1} + r^{a-1}} \right) \frac{r^a u_w dr_w}{r^a + \eta} \\
\]

Para calcular el desplazamiento y las tensiones en un radio \(r \) dentro de la capa bobinada se acumulan los anillos diferenciales desde \(r \) hasta exterior \(r_{i+1} \). El resultado es

\[
u(r) = -\sigma_w \left(\frac{\eta}{R_A} \frac{1}{r^a} + \frac{r^a}{r^a + \eta} \right) I_w(r, r_{i+1}) \\
\sigma_w(r) = \sigma_w \left[1 + a \left(\frac{\eta}{r^{a+1} + r^{a-1}} \right) I_w(r, r_{i+1}) \right] \] (7.18)

\[
\sigma_r(r) = -\sigma_w \left(\frac{\eta}{r^{a+1} + r^{a-1}} \right) I_w(r, r_{i+1})
\]

y la integral \(I_w(r, r_{i+1}) \) es

\[
I_w(r, r_{i+1}) = \int_r^{r_{i+1}} \frac{r^a u_w}{r^{2a} + \eta} dr_w \] (7.19)

Esta integral \(I_w \) no tiene una fórmula primitiva simple que sea válida para todos los valores de \(a \), como se ha comentado anteriormente para las ecuaciones 7.7 y 7.10, se resuelve mediante cálculo numérico. Pero si el valor de \(a \) es entero existe una solución finita que puede ser útil para comprobar del sistema de cálculo.

Para \(a = 2 \) es

\[
I_w = \eta^{\frac{1}{4}} \left(\frac{1}{4} \ln \frac{r - \eta^2}{r + \eta^2} + \frac{1}{2} \arctan \frac{r}{\eta^2} \right) \] (7.20)

y para \(a = 4 \) es
\[I_w = \eta^3 \left\{ \frac{1}{8} \ln \frac{r - \eta^\frac{1}{8}}{r + \eta^\frac{1}{8}} + \arctan \frac{r}{\eta^\frac{1}{8}} + \frac{1}{8\sqrt{2}} \ln \frac{\eta^2 + \sqrt{2}\eta^\frac{1}{8} + \eta^\frac{1}{8}}{r^2 - \sqrt{2}\eta^\frac{1}{8} - \eta^\frac{1}{8}} \right\} \]

El valor aproximado de la tensión axial se determina, igual que en el rotor de material único, con la ecuación 7.11 y aplicando las tensiones de la ecuación 7.18.

Las capas inferiores se calculan como un cilindro sometido a presión exterior, utilizando la solución del rotor multicapa del capítulo 6 y considerando \(i - 1 \) capas, entre \(r_1 \) y \(r_i \). Para ello se sustituye la condición de tensión radial exterior nula de la ecuación 6.41 por una compresión radial, aplicada al radio \(r_i \), igual al valor de \(\sigma_r(r_i) \) de la ecuación 7.18.

Las ecuaciones 7.18 son parecidas a la solución que se propone en el artículo de Tarnopol’skii y Beil (1983) [48], aunque solamente considera el bobinado sobre mandrino metálico y no es aplicable a un rotor multicapa genérico.

7.2.6. Ejemplo de rotor con mandrino

Para comprobar el sistema de cálculo anterior se aplica a un rotor de fibra que incorpore el mandrino metálico de bobinado. Aunque, no es propiamente un rotor multicapa de varios materiales compuestos, el cálculo debe realizarse con el mismo sistema.

Con este ejemplo se estudia, además, un tipo de configuración que presenta algunas ventajas económicas, como se comentó en el apartado 1.2.4. A pesar de tener en condiciones normales unas tensiones muy desfavorables, mejoran sustancialmente al aplicar un pretensado durante el bobinado.

Para el ejemplo se elige el rotor del apartado 6.1.5 pero con un mandrino de aluminio, como se muestra en la figura 7.9.

![Figura 7.9: Rotor de fibra con mandrino de bobinado incorporado](image)

El rotor es de fibra de vidrio con radio interior de \(r_1 = 0.3 \) m y exterior de \(r_3 = 0.5 \) m, y ahora el mandrino de aluminio sustituye la fibra de vidrio hasta \(r_2 = 0.31 \) m. Se aplica una tensión de bobinado de \(\sigma_w = 50 \) MPa a toda la fibra de vidrio, desde 0.31 hasta 0.5...
m. Las propiedades elásticas del aluminio son: \(E = 70 \) GPa y \(\nu = 0.34 \) y la resistencia a la rotura \(X = 300 \) MPa. En la fibra de vidrio se aplican las propiedades del material curado, igual que las del apartado 7.2.4.

En la figura 7.10 se presentan los resultados del cálculo, el desplazamiento radial y las tensiones, después del pretensado, según las ecuaciones 7.18. El desplazamiento es negativo, en el interior es mínimo y en el exterior es cero. La tensión tangencial es igual a la de bobinado, \(\sigma_\theta = 50 \) MPa, en el exterior, \(r/r_e = 1 \), y disminuye con el radio, llegando a ser negativa en la propia capa de pretensado. En el mandrino la compresión tangencial alcanza un valor de \(-250 \) MPa debido al pequeño grosor de aluminio comparado con la capa de fibra pretensada. La tensión radial de compresión alcanza un valor significativo para la fibra, el máximo es de \(-11 \) MPa. La tensión axial es pequeña en la fibra y en el mandrino llega a \(-41 \) MPa, aunque es poco importante para la resistencia del aluminio.

Si estas tensiones se aplican conjuntamente con el resto de cargas se comprueba que el rotor con mandrino mejora sustancialmente, aunque hay que tener en cuenta que un rotor con mandrino tiene unas tensiones muy desfavorables. Este rotor, sin pretensado y curado a 120°C, tiene una velocidad máxima, para un factor de rotura unitario, de 6843 rpm, muy inferior a 9670 rpm del mismo rotor pero sin mandrino.

En la figura 7.11 se presenta la comparación de los resultados de las tensiones y el factor de rotura del rotor sin pretensado y con pretensado. Se observa que las tensiones se modifican sustancialmente, la tensión tangencial en el aluminio disminuye de 450 a 200 MPa, la radial en la fibra se reduce de 180 MPa a 80 MPa y la axial en el mandrino que pasa de \(-6 \) a \(-48 \) MPa. Estas variaciones suponen una mejora sustancial del factor de rotura, sobre todo en el aluminio, disminuye de 1 a 0.55.

Con esta mejora en las tensiones de pretensado la velocidad máxima, para un factor de rotura unitario, es de 9220 rpm, o sea, próxima a la velocidad del rotor sin mandrino.
7.3. CÁLCULO MEDIANTE ELEMENTOS FINITOS

7.3.1. Limitación del cálculo directo

En los capítulos anteriores los resultados obtenidos en el cálculo analítico de las tensiones mecánicas y térmicas se han comprobado mediante ejemplos simples calculados en MEF, aquí se pretende lo mismo para las tensiones de bobinado. En aquéllos ha sido suficiente utilizar las herramientas habituales de los programas comerciales, pero en las tensiones de pretensado estos recursos son insuficientes, al menos para aplicar un cálculo directo. A continuación se presenta un procedimiento de cálculo de las tensiones del bobinado mediante una simulación MEF, a través de un proceso acumulativo de tensiones.

Existen varias dificultades en la simulación del bobinado que no permiten aplicar directamente los programas comunes. La geometría del rotor no es única, se modifica gradualmente durante el proceso de bobinado. Además, la carga varía simultáneamente con la geometría, de manera que la fuerza externa se desplaza radialmente, pero los efectos internos permanecen y las tensiones se acumulan.

Para simular la generación de estas tensiones es necesario seguir el proceso gradual de formación del rotor durante el bobinado. A cada vuelta se crean condiciones geométricas y de carga nuevas, y a la vez, se acumulan las tensiones que cada una de ellas genera.

Se utiliza el mismo programa comercial que en los capítulos anteriores, pero aplicando en un proceso de simulación especial para conseguir la creación de la tensión de hilo y la acumulación de las vueltas del bobinado. La tensión se simula aplicando una dilatación térmica ficticia y el bobinado se obtiene apilando modelos elementales, de forma similar al procedimiento utilizado en el cálculo analítico.
7.3.2. Método de cálculo

El método de cálculo se basa en dividir la capa pretensada en subcapas, que simulan una o varias vueltas de bobinado, y para cada una se crea un submodelo de cálculo. El proceso es parecido al seguido en el cálculo analítico de la figura 7.4, pero ahora los aros son discretos. A cada submodelo se le aplica la tensión de bobinado mediante un incremento de temperatura ficticio que genera una tensión tangencial equivalente. Las tensiones globales del pretensado se obtienen sumando las parciales de cada submodelo.

La figura 7.12 representa el proceso de simulación de un rotor multicapa que tiene una tensión de bobinado \(\sigma_w \) aplicada a una capa intermedia \(i \), igual que el rotor de la figura 7.8. Se elige un modelo en forma de sector circular desde el radio \(r_1 \) hasta el radio \(r_{i+1} \), cuyos radios laterales pueden desplazarse sólo en dirección radial. La capa pretensado \(i \) se divide subcapas, figura 7.12(a), de forma parecida a los incrementos \(dr \) de la figura 7.8, y para cada una de ellas se confecciona un submodelo. En la figura 7.12(b) se representa el submodelo de la subcapa \(j \) que está formado por las \(i - 1 \) capas, desde \(r_1 \) hasta \(r_i \), las \(j - 1 \) subcapas, desde \(r_i \) hasta \(r_j \) y la propia subcapa de tensado \(j \), desde \(r_j \) hasta \(r_{j+1} \).

![Figura 7.12: Proceso de simulación de la tensión de bobinado mediante un \(\Delta T \).](image)

Para simular las tensiones parciales creadas por el bobinado de la subcapa \(j \) se aplica una deformación térmica igual a la deformación tangencial \(\varepsilon_{\theta w} \) que generaría la tensión de bobinado \(\sigma_w \), como representa en la figura 7.12(b). Para ello se elige un incremento de temperatura arbitrario \(\Delta T \) y se determinan unos coeficientes de dilatación térmica ficticios \(\alpha_{\theta w} \) y \(\alpha_{r w} \), válidos solamente en la subcapa de tensado, calculados a partir de la deformación \(\varepsilon_{\theta w} \). Sus valores son

\[
\alpha_{\theta w} = \frac{\sigma_w}{E_\theta \Delta T}; \quad \alpha_{r w} = -\nu_{r \theta} \frac{\sigma_w}{E_\theta \Delta T}
\]

(7.22)

La creación de tensiones sigue el proceso mecánico de la figura 7.12(a) y (b). El incremento de temperatura \(\Delta T \) supondría una deformación tangencial \(\varepsilon_{\theta w} \) pero las condiciones de contorno en los radios laterales no permiten ningún desplazamiento tangencial y se genera la tensión tangencial de bobinado \(\sigma_w \) deseada. Dicha subcapa se apoya sobre el resto del...
7.3. CÁLCULO MEDIANTE ELEMENTOS FINITOS

Cilindro, las \(i - 1 \) capas y las \(j - 1 \) subcapas, de forma que la tensión tangencial induce un desplazamiento radial \(u \) y una tensión tangencial \(\sigma_\theta \) de compresión el resto del cilindro. El desplazamiento \(u \) afecta también a la subcapa \(j \) y la tensión tangencial de tracción \(\sigma_w \) disminuye ligeramente debido a la tensión \(\sigma_\theta \), apartándose del valor deseado. Se corrige aplicando un factor multiplicador a los resultados finales, dado que la tensión final es siempre proporcional a la dilatación térmica aplicada.

7.3.3. Ejemplo

Para comprobar este método de cálculo se aplica al rotor de fibra de vidrio del apartado 7.2.4 y los resultados se comparan con los del cálculo analítico. Se elige un ángulo del sector muy pequeño para facilitar la visualización de las tensiones, de manera que las direcciones horizontal y vertical coincidan con la radial y tangencial en todos los puntos. La capa pretensada \(i = 2 \), desde \(r_2 = 0,4 \) a \(r_3 = 0,5 \) m, se divide en 13 subcapas que dan lugar a 13 submodelos de cálculo.

Figura 7.13: Tensión tangencial generada por la pretensión de la subcapa \(j=5 \)

Figura 7.14: Tensión radial generada por la pretensión de la subcapa \(j=5 \)

En la figuras 7.13 y 7.14 se presentan los resultados y las condiciones de contorno del submodelo correspondiente a \(j = 5 \). Se muestra el cilindro base de \(r_1 \) a \(r_2 \), dividido en 4 elementos radiales, y las 5 primeras subcapas de la zona de pretensada con un elemento en cada una. La última, de \(r_j \) a \(r_{j+1} \), corresponde a la subcapa \(j \) con tensión.

En la figura 7.13 de la tensión tangencial se observa que la subcapa de tensado última está a tracción y las restantes están a compresión, aunque la tensión cambia progresivamente y no como en la figura 7.12(c). Su valor máximo, 48,0 MPa, no alcanza la tensión
de bobinado, $\sigma_w = 50$ MPa, debido a la contracción u del cilindro base, como se ha comentado más arriba, y todas las tensiones deben corregirse con factor multiplicador 50/48.

La tensión radial de la figura 7.14 debería ser máxima en la frontera (r_j) y nula en los dos extremos pero observan algunas desviaciones. Están originadas en parte por el modelo pero, sobre todo, por la diferencia de escala entre la tensión tangencial y la radial, de manera que un pequeño error en la primera se multiplica por 10 en la radial. Del modelo se puede objetar que el valor máximo en r_j depende del cambio progresivo de la tensión tangencial y el valor en el extremo derecho está influido por los efectos de borde y por las pequeñas diferencias entre la dirección radial y la horizontal. Estas desviaciones se corren simplemente extrapolando los valores en los puntos de lectura y se obtienen resultados totalmente correctos.

![Figura 7.15: Tensiones residuales, parciales y totales, generadas por las subcapas pretensadas.](image)

Las tensiones globales se obtienen sumando los resultados de los 13 submodelos, como se muestra en los gráficos de la tensión tangencial y la radial de la figura 7.15. Ambos son totalmente coherentes, en la tangencial el valor es máximo en el radio exterior y decrece con el radio, y en la compresión radial el valor es máxima en el centro y nulo en los extremos. También se comprueba que la tensión tangencial en $r/r_e = 1$ coincide con la tensión de bobinado, $\sigma_w = 50$ MPa.

Si se comparan con los resultados con los resultados del cálculo analítico de la figura 7.6 se comprueba los valores coinciden. En la figura 7.16 se presentan los resultados del cálculo analítico con líneas y los de MEF con puntos, y se observa que las desviaciones son mínimas.

La coincidencia entre ambos sistemas de cálculo es importante para comprobar la validez de las dos simulaciones. Aunque hay que reconocer que en algunos aspectos ambos modelos son coincidentes y, por lo tanto, la validez absoluta solamente se obtendría mediante la comprobación a través de resultados experimentales.
7.4. CONSIDERACIONES VISCOELÁSTICAS

7.4.1. Propiedades viscoelásticas

En la simulación del bobinado se ha considerado que el material es totalmente elástico, ahora se estudia la influencia del comportamiento real del material sobre las tensiones residuales. Las tensiones residuales del rotor se generan durante el bobinado y, posteriormente, se somete al proceso de curado de la resina, se calienta a la temperatura de curado y, una vez solidificada, se enfría. A lo largo de este proceso las propiedades del material varían y solamente tiene comportamiento elástico después del curado.

Si el material no está solidificado su comportamiento es distinto al considerado en los apartados anteriores. Al inicio del proceso, durante el bobinado, la fibra se encuentra en estado sólido pero la resina, todavía no curada, se comporta como un material viscoelástico. La rigidez en dirección longitudinal de la fibra es elevada y es capaz de soportar las tensiones de bobinado \(\sigma_w \), pero en dirección transversal es muy baja. En el dibujo de la figura 7.17(a) se observa como la matriz se interpone entre los hilos de las fibras y transmite la tensión radial \(\sigma_r \). Si la resina se halla en estado no curado y, por lo tanto, sin consistencia sólida, cede a la presión y provoca el desplazamiento radial \(u \).

En un rotor cilíndrico las deformaciones y tensiones en dirección tangencial y radial son dependientes entre sí, de manera que el desplazamiento radial \(u \) produce una disminución de la tensión de bobinado \(\sigma_w \), como se muestra en las figuras 7.17(b) y (c).
En el bobinado la tensión tangencial σ_w induce una presión radial p_w o tensión radial σ_rw, como se ha visto en la figura 7.1 y ahora se muestra en la figura 7.17(b); es más, la tensión tangencial σ_w necesita de la tensión radial σ_{rw} para mantenerse en el rotor en forma de tensión residual. Si el material no es rígido en la dirección radial y con la tensión σ_{rw} sufre un desplazamiento u, figura 7.17(c), la deformación tangencial de bobinado $\epsilon_{\theta w}$ disminuye hasta ϵ_{θ}. Luego, la tensión tangencial, que inicialmente es la de bobinado σ_w, se reduce hasta σ_{θ} y, a su vez, la radial σ_{rw} también se reduce hasta σ_{r}. Por lo cual, la falta de rigidez de la matriz produce la relajación de las tensiones residuales.

Para que existan tensiones residuales de bobinado es necesario que la matriz sea suficientemente rígida durante todo el proceso, desde el bobinado hasta el estado sólido final. El comportamiento viscoelástico de la resina antes de su endurecimiento en el curado es de suma importancia para las tensiones de pretensado del rotor.

7.4.2. Resultados experimentales

En la fabricación de un rotor el hilo de bobinado puede presentar dos formas: un filamento impregnando con resina en estado fluido, o una cinta impregnada de resina semicurada en estado seco. En ambos casos el rotor se somete, una vez completado el bobinado, a la temperatura de curado para endurecer la matriz.

Los artículos de Hahn y Kempner(1993) [23], Kempner y Hahn (1995) [26] estudian los dos sistemas de bobinado a través de unos ensayos de laboratorio y un cálculo analítico. Su experimento consiste en colocar galgas de presión sobre el mandrino de bobinado y medir la evolución de la tensión radial durante el bobinado. Paralelamente simulan la generación de tensiones residuales, mediante cálculo numérico, considerando que cada tensión es suma de dos componentes, una elástica y otra de fluencia en función del tiempo. Aplicando los resultados experimentales de la presión superficial al sistema de cálculo deducen los valores reales de las propiedades del material, tanto elásticas como de fluencia. Finalmente, con el sistema de cálculo y las propiedades, determinan las distribuciones en el radio de las tensiones residuales del rotor al final del proceso de
7.4. CONSIDERACIONES VISCOELÁSTICAS

Los artículos concluyen que las tensiones residuales en el bobinado con cinta seca dependen sólo de la componente elástica del modelo y no se relajan con el tiempo, pero los valores obtenidos son relativamente bajos. Las tensiones en el bobinado con el filamento húmedo dependen de las dos componentes, elástica y de la fluencia, y con el tiempo sus valores acaban siendo prácticamente nulos.

Los datos experimentales de estos autores son muy interesantes, se utilizan para comprobar la validez del sistema de cálculo de la sección 7.2 y, principalmente, para deducir las tensiones reales del bobinado. Para ello, se reproducen los cálculos de los artículos con las ecuaciones 7.18, aplicando las propiedades experimentales, y los resultados se comparan con las distribuciones del artículo, figura 7.18.

![Figura 7.18: Reproducción de los resultados de Hahn y Kempner (1991) [23] mediante el modelo de cálculo de este capítulo.](image)

El ejemplo del artículo está formado por un rotor con mandrino de aluminio, bobinado con cinta seca de fibra de vidrio tensada y con los datos siguientes: radios del mandrino 25,4 y 28,8 mm, grosor de la cinta bobinada 0,23 mm y tensión debobinado 29,3 MPa.

Las propiedades del material durante el bobinado deducidas en el artículo a partir de los experimentos, con el subíndice \(w \), son: \(E_{Lw} = 27200 \) MPa, \(E_{Tw} = 2,17 \) MPa y \(\nu_{T_{Lw}} = 0,22 \). Es importante resaltar que el valor del módulo elástico tangencial es parecido al valor del material curado, \(E_L = 38600 \) MPa, en cambio, el modulo radial es muy inferior a \(E_T = 8270 \) MPa y, por tanto, la rigidez transversal del material sin curar es unas 4000 veces inferior a la del material curado. Esto implica, según lo expuesto en el apartado anterior, una importante relajación de las tensiones residuales.

En la figura 7.18(a) se representa la tensión tangencial y la radial generadas al bobinar 100 vueltas de cinta tensada. Los resultados de la tensión tangencial obtenidos en la ecuación se comparan con los del artículo y se deduce que la coincidencia en muy buena,
por lo que se deduce que el modelo de cálculo de la sección 7.2 es correcto.

En cuanto a las tensiones residuales se observa que la tangencial se ha relajado totalmente excepto en los dos extremos, o sea, junto al mandrino y en el radio exterior. La radial también es muy pequeña, en la fibra es de 0.4 MPa. En el gráfico (b) se presenta la tensión tangencial para espesores muy pequeños, con un número de vueltas muy bajo, 5, 10 y 15, y se comprueba que también se relaja.

De estos resultados se deduce que las tensiones residuales generadas en el bobinado utilizando materiales normales, filamento húmedo y cinta seca, son muy bajas. Con filamento húmedo las tensiones se relajan totalmente y con cinta seca sólo se acumulan en unas pocas vueltas. A la vista de estos resultados se concluye que para obtener tensiones de pretensado hay que recurrir a materiales especiales, con más rigidez radial. Para ello es necesario que durante el proceso de bobinado la resina tenga mayor dureza.

7.4.3. Reducción a un sistema elástico

A partir de los resultados anteriores se deduce que el sistema de cálculo de la sección 7.2 puede simular las tensiones de residuales del bobinado con cinta seca, solamente necesita variar las propiedades del material con los valores experimentales. Es suficiente considerar la modificaciones de los parámetros elásticos, no es necesario introducir la fluencia con del tiempo del material.

Las propiedades que más varían son los módulos elásticos, sobre todo el transversal E_{Tw}. Su valor depende de múltiples factores, en Tarnopol’skii y Beil (1983) [48] se exponen algunos ejemplos de la relación con la temperatura y la presión, y en Lee y Springer (1990) [33] en función del grado de curado. Pero es un fenómeno complejo y no se hallan leyes generales que resuman los diferentes casos particulares, por lo que es necesario recurrir a la experimentación según las condiciones particulares de cada caso.

En los cálculos de las tensiones residuales es suficiente considerar que se modifica el módulo transversal E_{Tw}, el resto las propiedades influyen poco. Esta variación se puede tener en cuenta con un parámetro que dependa del proceso de curado del material. Se define un coeficiente de variación κ de la siguiente forma

$$\kappa = \left(\frac{E_T}{E_{Tw}} \right)^{\frac{2}{7}} \quad (7.23)$$

en donde E_T es el módulo elástico transversal en el material curado y E_{Tw} es el valor modificado durante el proceso de bobinado. Este valor afecta directamente a la rigidez radial E_r del rotor y, en consecuencia, al parámetro a de la ecuación 2.13, que durante el bobinado a_w se modifica de la forma

$$a_w = \kappa \cdot a \quad (7.24)$$

La ventaja de utilizar el parámetro κ es que depende solamente del comportamiento de la matriz, y está en función de la rigidez de la resina antes del curado. Su valor oscila
entre 1 en estado curado y 150 en estado fluido, según Kempner y Hahn (1995) [26], para el caso de cinta seca es de 60 según Hahn (1993) [23].

7.4.4. Curado in situ

La relajación de tensiones residuales es lógico que se reduzca si se abrevia el tiempo transcurrido entre el bobinado la solidificación por curado. Este tiempo es mínimo si el endurecimiento de la resina empieza en el momento que se deposita sobre el cilindro, y para ello el rotor debe someterse a la temperatura de curado durante el bobinado. A este procedimiento se denomina curado in situ.

Existen experiencias de este procedimiento publicadas, por ejemplo el artículo de Gabrys y Bakis (1998) [18]. Presenta los resultados de la medida experimental de las tensiones residuales creadas en una serie rotores bobinados sobre un mandrino de aluminio y su posterior extracción. En el bobinado utiliza filamento húmedo fuertemente tensado y la temperatura se mantiene a 120°C. Una vez completada la fabricación coloca bandas extensométricas en las superficies interior y exterior, y mide las tensiones residuales cortando radialmente el rotor.

Los resultados, según el autor, están muy lejos de lo esperado, incluso son contrarios a lo que pretendía con el pretensado. En la superficie interior se obtienen tensiones tangenciales de tracción y en la exterior de compresión. Los autores exponen estos resultados experimentales pero no se detienen a analizar las causas de esta aparente contradicción.

Si se aplica el cálculo del rotor multicapa del apartado 7.2.5, utilizando las propiedades del material deducidas en los experimentos de Hanh y Kempner del apartado 7.4.2, se obtienen unas conclusiones interesantes. El cálculo es poco preciso por falta de datos pero los resultados coinciden con las tendencias de los experimentos.

En el cálculo se simulan secuencialmente cada uno de los pasos de fabricación: bobinado, curado, extracción del mandrino y enfriado. Se obtienen unas tensiones residuales globales de tracción en el radio interior y de compresión en el externo, igual que los resultados experimentales, y los valores numéricos son parecidos. Así por ejemplo, para el rotor de \(r_i/r_e = 0.5 \) los resultados de la deformación tangencial, en unidades de \(10^{-6} \), experimentales del artículo y los determinados en el cálculo para el radio interior y exterior son:

<table>
<thead>
<tr>
<th></th>
<th>(r_i)</th>
<th>(r_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor experimental según Gabrys y Bakis (1998) [18]</td>
<td>1070</td>
<td>−745</td>
</tr>
<tr>
<td>Resultado del calculado con modelo del apartado 7.2.5</td>
<td>703</td>
<td>−592</td>
</tr>
</tbody>
</table>

La diferencia no es alta si se considera que se desconocen algunos detalles sobre la confeción del ensayo y los valores de las propiedades del material, tomados de experiencias similares, son sólo aproximaciones.

De todo ello se concluye en primer lugar, que los resultados del cálculo con el sistema desarrollado en la sección 7.2 son bastante coincidentes con los experimentales. En se-
gundo lugar, que el curado in situ no resuelve el problema del pretensado, al menos en el bobinado con filamento húmedo.

7.4.5. Propuestas alternativas

El pretensado mejora, al menos en teoría, la resistencia del rotor pero en la práctica, como se ha comprobado más arriba, tiene bastantes problemas de fabricación. Para afrontar con profundidad esta cuestión es imprescindible realizar ensayos experimentales y conocer el comportamiento exacto del material, pero se escapa del alcance de este trabajo y podría ser el objeto de un estudio futuro. No obstante, con la información disponible en los artículos citados y con los resultados obtenidos en el sistema de cálculo desarrollado se presentan a continuación algunas soluciones posibles para mejorar el pretensado.

Una primera propuesta es bobinar con cinta seca con grado de curado lo más alto posible. La resina se acerca al comportamiento elástico y evita la relajación de tensiones, pero por contra, disminuye la resistencia a tracción radial entre dos vueltas sucesivas. Este problema se podría evitar bobinando con cinta de grado de curado distinto según la zona; menor en el radio medio para que resista la tensión radial final y mayor en los radios extremos.

![Figura 7.19: Pretensado mediante bobinado de lámina totalmente curada unida por una fina película de resina.](image)

Otra opción es bobinar con cinta totalmente curada, añadiendo una fina película de resina fluida no curada entre dos vueltas consecutivas, figura 7.19. La cantidad de resina debería reducirse a la cantidad imprescindible para tapar los poros pero sin disminuir la rigidez radial. En este caso habría de asegurar que no queda perjudicada la resistencia final de la unión entre dos cintas curadas previamente.

En este último caso se podría sustituir la cinta de amplitud pequeña, 2 o 3 mm, por una lámina de amplitud igual al ancho del rotor, como se representa en la figura 7.19. De esta forma se aseguraría la perfecta superposición de capas y se evitarían las irregularidades...
producidas en la unión lateral de dos cintas. Por contra, la fuerza total de tensado debe ser mucho mayor y la resistencia del mandrino podría ser insuficiente. En tal caso, la tensión unitaria del filamento se debería complementar con la presión de uno o varios rodillos exteriores, como se muestra en la figura 7.19.
Capítulo 8

PRETENSADO TÉRMICO

8.1. Rotor de material único curado en dos etapas

8.1.1. Estudios sobre las tensiones térmicas

Las tensiones residuales de origen térmico estudiadas en el capítulo 3 y aplicadas al cálculo de resistencia del capítulo 6 son perjudiciales para las tensiones finales del rotor. Si el curado se realiza con distribuciones de temperatura no uniforme las tensiones residuales son menores, como se comprueba en los ejemplos del capítulo 5. Luego, es interesante estudiar distintos tipos de distribuciones de temperatura para obtener tensiones residuales menos perjudiciales.

En un estudio más profundo se pueden hallar nuevos procesos térmicos para el curado, combinando varias distribuciones no uniformes, que generen tensiones residuales prácticamente nulas. Incluso, en algunos de ellos se obtienen tensiones de signo contrario a las habituales y, por lo tanto, beneficiosas para las tensiones finales del rotor.

Estas tensiones residuales de signo contrario son parecidas a las tensiones generadas por el pretensado en el bobinado y son igualmente beneficiosas para el rotor. A estos procesos térmicos se les puede llamar por similitud, pretensado térmico. Las tensiones en teoría son iguales pero en la práctica son mucho mejores, no sufren la relajación de aquéllas porque están generadas durante el enfriamiento posterior al curado, cuando el material está totalmente solidificado.

8.1.2. Tensiones residuales en el curado a temperatura no uniforme

Para entender los procesos que dan lugar al pretensado térmico es necesario analizar las dilataciones del rotor. Éstas se deben combinar de forma adecuada para que las dilataciones y contracciones de distintas zonas del rotor generen las tensiones favorables. Para ello, antes de entrar en el estudio de los procesos térmicos complejos se exponen
brevemente las dilataciones en los curado simples descritos en los capítulos 3 y 5.

El curado a temperatura uniforme, descrito en la sección 3.1, es el más simple y sus tensiones sirven de referencia. Con ellas se valora la mejora en las tensiones para los distintos procesos térmicos que se presentan en este capítulo.

Para facilitar la exposición y valorar los resultados se aplica a un único rotor las distintas formas de curado. Se utiliza el mismo ejemplo que en los capítulos anteriores, un rotor de fibra de vidrio orientada a 0° y radios 0,3 y 0,5 m. Las propiedades del material son: $E_L = 38,6$ GPa, $E_T = 8,27$ GPa, $\nu_{\theta r} = 0,26$, $\alpha_\theta = 8,6$ y $\alpha_r = 22,1 \times 10^{-6}$/°C.

En la figura 8.1 se presentan los resultados cuando se somete a una distribución uniforme, capítulo 3, con una temperatura de curado (T_c) de 120°C y una temperatura ambiente o final (T_f) de 20°C. Los gráficos de desplazamiento y tensiones corresponden a un radio situado lejos del extremo axial, o sea con $\varphi = 1$. La figura incluye los gráficos necesarios para el estudio comparativo de los distintos procesos de curado: las temperaturas, el desplazamiento radial y las tensiones residuales. En este último no se representa la tensión axial porque no necesaria para el estudio del proceso.

![Figura 8.1](image)

Figura 8.1: Temperaturas, desplazamiento y tensiones residuales de un curado a temperatura uniforme.

Estas tensiones, figura 8.1, coinciden con los resultados del ejemplo para el cálculo térmico del sistema DAc en la figura 4.5. Cabe destacar que la tensión radial es de tracción a pesar de sufrir una contracción radial superior en el radio exterior que en el interior. Este comportamiento no se explica solamente por la curvatura del rotor, porque la proporción entre radios (0,30 y 0,50 m) es inferior a la de sus desplazamientos (−0,15 y −0,56 mm).

Es debido, principalmente, por la diferencia entre los coeficientes de dilatación térmica en dirección radial y tangencial, como se ha descrito en el apartado 3.1.1.

Estos resultados se utilizan para valorar la reducción de las tensiones residuales en los distintos procesos de curado. Aunque, la valoración global debe hacerse sobre las tensiones finales del rotor, o sea, añadiendo las tensiones de la fuerza centrífuga. Para ello, se aplica la velocidad máxima, 9681 rpm, para el límite de rotura y se obtienen los resultados de las tensiones totales y del factor de rotura de la figura 8.2.

El sistema más simple de mejora es el curado con la distribución de temperaturas no uniforme del capítulo 5. El curado del rotor anterior se modifica, la temperatura en el
8.1. ROTOR DE MATERIAL ÚNICO CURADO EN DOS ETAPAS

![Figura 8.2: Tensiones y factor de rotura para el rotor curado a temperatura uniforme y sometido a su velocidad límite de 9681 rpm](image)

El radio interior se mantiene a la temperatura de curado, T_c, y en el exterior se eleva a 200°C. Los resultados obtenidos se muestran en la figura 8.3.

![Figura 8.3: Temperaturas, deformación y tensiones residuales de un curado a temperatura no uniforme.](image)

El desplazamiento radial de contracción ha aumentado respecto del caso uniforme de la figura 8.1, pero el incremento es mayor en el radio exterior que en el interior y, por lo tanto, la zona central está más comprimida. En las tensiones se observa que la radial disminuye respecto de la figura 8.1, el valor máximo de 1,6 MPa se reduce a 0,4 MPa.

Con este ejemplo se comprueba que un gradiente positivo de temperatura favorece las tensiones residuales del rotor pero tiene unos límites. La temperatura en la cara exterior no puede aumentar indefinidamente porque, al ser muy superior a la temperatura de curado, perjudica la resina. Aunque podría aumentar un poco utilizando en esta zona un tipo de resina distinta, con temperatura de curado más elevada. Por otra parte, la temperatura en el radio interior no debe ser inferior a la de curado.
8.1.3. Proceso de curado en dos etapas

En los dos casos anteriores el curado del rotor se realiza en una sola distribución de temperaturas, en el cual todos los puntos se curan simultáneamente. Pero se puede realizar en dos etapas con dos zonas de curado. Si el rotor se somete a una distribución de temperaturas no uniforme, con uno de los valores extremos inferior a T_c, solamente se cura una parte del rotor, y es necesario aplicar una segunda distribución con un valor superior a T_c en la zona no curada.

En el curado convencional de una sola etapa consta de una distribución uniforme de temperaturas y del posterior enfriamiento hasta la temperatura ambiente. Ahora en el curado dos etapas, cada una de ellas consta de una distribución de temperaturas y del posterior cambio térmico hasta la siguiente. En la distribución de temperaturas se produce el curado de una parte del material y en el cambio térmico se generan las tensiones residuales.

![Figura 8.4: Estados de temperatura en el curado en dos etapas.](image)

En la figura 8.4 se muestran las distribuciones de temperaturas para conseguir el curado en dos etapas, en la primera se somete a la distribución a y en la segunda a la b. En la distribución a la temperatura interior T_i^a en r_i es superior a T_c^a y queda solidificada la zona interior hasta el radio r_c^a. En la distribución b la temperatura exterior T_i^b es superior a T_c^b, de manera que en r_c^a se alcanza T_c y se solidifica el resto.

En la primera etapa el límite de la zona curada situado en r_c^a no es un punto definido, en realidad es una franja de transición donde el grado de curado de la resina varía gradualmente. Más adelante se analizará con más detalle este fenómeno, de momento para simplificar se considera puntual. En la segunda etapa el coeficiente de transmisión térmica del material curado es algo distinto del inicial y la distribución b presenta un
pequeño cambio de pendiente en r_c^a. Esto no afecta al curado final y se considera que la curva sigue siendo una función única.

Las tensiones residuales aparecen durante los cambios de temperatura y solamente en las zonas solidificadas. En la etapa 1, con el cambio de a a b, se crean tensiones desde r_i hasta r_c^a, y en la etapa 2, con el enfriamiento desde b hasta la temperatura final, se crean en todo el rotor. La tensión residual final es la suma de las tensiones en ambas etapas.

Se observa que la segunda etapa es muy parecida al curado no uniforme descrito en el apartado anterior, figura 8.3(a), incluso la distribución b tiene la misma la pendiente, pero la temperatura en el radio interior T_b^a es muy inferior a T_c y se generan tensiones residuales más bajas.

8.1.4. Consideraciones sobre el curado del material

La cinética de curado de la resina no influye en las tensiones residuales cuando el curado se realiza simultáneamente en todos los puntos del rotor, pero en el curado por etapas afecta a la zona de transición en el límite de curado r_c^a. En este capítulo se considera que la frontera es puntual pero en realidad el grado de curado varía progresivamente en una franja. Antes de entrar en el cálculo de las tensiones se determina la variación del grado de curado en la franja de transición y se valoran las consecuencias al reducirla a un solo punto.

Para el estudio de la cinética de curado se sigue el modelo de Lee y Springer (1990) [33] que, a su vez, se basa en los datos de Dusi y otros (1987) [12]. Este modelo determina la variación del grado de curado en función del tiempo y la temperatura para la resina epoxi de tipo 976. Aunque se aplica a un sólo tipo de resina, es suficiente para comprobar su influencia sobre las propiedades del material en la franja de transición. Para otros tipos de resina la evolución sería similar, aunque con valores de tiempo y temperatura distintos.

Las fórmulas y los parámetros de la resina 976 se aplican a un rotor con la misma geometría que en los ejemplos anteriores, de radios 0,3 y 0,5 m. Se somete a una distribución de temperatura no uniforme, con una temperatura máxima de 180°C en el radio interior y de 40°C en el exterior, los resultados se muestran en la figura 8.5. En el gráfico de grado de curado se muestra la progresión del curado mediante distintas curvas tomadas a intervalos de 20 min. El curado es más rápido donde la temperatura es más elevada, en cambio en donde es inferior a 120°C apenas experimenta transformación química.

El grado de curado de un punto aumenta progresivamente con el tiempo, aunque a intervalos cada vez más pequeños. Su valor máximo tiene un límite cercano al 90 %, pero es suficiente porque algunos autores lo consideran totalmente curado a partir del 80 %. En el resto de puntos, donde no se alcanzan estos valores, también aumenta con el tiempo a intervalos cada vez más pequeños, de manera en los últimos minutos avanza muy lentamente.

Lee y Springer consideran en sus estudios que por debajo del 20 % el material se comporta como un fluido viscoso y por encima del 60 % como un sólido, de forma que la transición de
las propiedades mecánicas, de fluído a sólido, se realiza dentro de este estrecho margen de grados curado. Por otra parte, en el ejemplo se observa que las curvas tienen una pendiente máxima en los valores comprendidos entre el 40 y el 60%, con lo cual la zona con propiedades intermedias entre fluído y sólido es pequeña. Aunque, en otros casos puede ser distinta porque también depende de la pendiente del gráfico de temperaturas.

Por todo ello se concluye que el error que se comete al considerarlo puntual es poco importante para las tensiones residuales. Para determinar el límite el cambio para el cálculo, que se ha denominado radio de curado r_c, en las figuras 8.4 y 8.5, se elige el radio correspondiente a un grado de curado intermedio del 40%. A su vez, este radio determina en el gráfico de temperatura, figura 8.5, el valor correspondiente a la temperatura de curado T_c.

8.1.5. Tensiones residuales en un rotor homogéneo curado en dos etapas

Las tensiones residuales del curado en dos etapas se determinan sumando las tensiones generadas en cada una de ellas. Se calculan aplicando las ecuaciones del capítulo 6 como si el rotor fuese de dos capas, separadas por el radio r_c^a.

En la figura 8.6 se presentan las temperaturas, el desplazamiento radial y las tensiones para cada una de las dos etapas. El rotor es el mismo que en el ejemplo del apartado 8.1.2 pero sometido a unas temperaturas, interior y exterior, en la distribución a de 160°C y 60°C, y en la b de 90°C y 170°C. Finalmente se enfriá hasta la temperatura ambiente de 20°C. Cabe observar que la distribución b tienen una pendiente en el gráfico de temperatura idéntica al caso de la figura 8.3, aunque todos los valores son 30°C más bajos.
8.1. ROTOR DE MATERIAL ÚNICO CURADO EN DOS ETAPAS

En la primera etapa (1), la distribución a solidifica la zona interior, hasta r_1^a, porque su temperatura es superior a T_c, y el ella se generan tensiones por el cambio de temperaturas hasta b. Esta zona se contrae porque se enfria, en cambio a partir de r_1^a se dilata, aunque mecánicamente permanece unida a la parte sólida. En el gráfico de las tensiones se observa que sólo existen en zona solidificada y sus valores son parecidos a los del enfriamiento normal de la figura 8.1.

![Temperatura, Desplazamiento y Tensiones](image)

Figura 8.6: Temperaturas, desplazamientos y tensiones residuales de un rotor curado en dos etapas.

En la segunda etapa, con el rotor totalmente curado, la temperatura cambia desde la distribución b hasta la temperatura final. El incremento de desplazamiento en esta segunda etapa es similar al desplazamiento del curado a temperatura no uniforme de la figura 8.3. La tensión radial final tiene un valor máximo de 0,5 MPa, que es muy parecido al valor máximo de la figura 8.3 pero en un punto próximo al radio interior. En cambio, en la zona central, donde se produce la rotura del rotor mostrada en la figura 8.2, el valor de la tensión radial es prácticamente nulo. Las tensiones tangenciales no tienen influencia sobre la rotura final del rotor.

El resultado de la tensión radial de este ejemplo es muy interesante; comprueba que el curado en dos etapas consigue que las tensiones residuales térmicas no sean perjudiciales para la resistencia final del rotor. Este tipo de curado fue publicado en Ripoll y Pérez-Aparicio (2004) [44].
8.2. Rotor con mandrino curado con pretensado térmico

8.2.1. Tensiones en un rotor con mandrino

En el apartado 7.2.6 se han estudiado las tensiones de un rotor con mandrino aplicando un pretensado mecánico y se comprueba la mejora que supone para las tensiones finales. Aquí se pretende obtener el mismo resultado pero mediante un pretensado térmico. Una versión previa de esta aplicación fue publicada en Ripoll y Pérez-Aparicio (2003) [42].

Antes de entrar en el proceso de pretensado se determinan las tensiones residuales generadas en el rotor del ejemplo presentado en el apartado 7.2.6, aunque sin pretensado mecánico y con un curado a temperatura uniforme de 120°C. Estos resultados se utilizarán como referencia para analizar las mejoras del pretensado térmico. Dicho rotor es de fibra de vidrio con mandrino de aluminio, como se muestra en la figura 8.7, y tiene los siguientes radios: \(r_1 = 0.3 \) m, \(r_2 = 0.31 \) m y \(r_3 = 0.5 \) m. Las dimensiones exteriores del rotor coinciden con el resto ejemplos para que los resultados sean comparables.

En la figura 8.8 se exponen los resultados y se observa que las tensiones residuales son especialmente elevadas, como se ha comentado en el apartado 7.2.6. En el mandrino la
8.2. ROTOR CON MANDRINO CURADO CON PRETENSADO TÉRMICO

tensión tangencial alcanza 120 MPa y en la fibra la tensión radial es de 3,7 MPa, muy superior a la del rotor sin mandrino de la figura 8.1 que valía 1,5 MPa.

Si al rotor con estas tensiones residuales se le añade una velocidad angular hasta alcanzar el límite de rotura se obtienen los resultados de la figura 8.9. El punto más débil, con un factor de rotura igual a la unidad, está el mandrino y es debido a la tensión tangencial. Su valor máximo es de 450 MPa, del cual 120 es de la tensión residual y el resto de la fuerza centrífuga. La tensión radial es menos perjudicial, sólo llega hasta 18 MPa.

Figura 8.9: Tensiones y factor de rotura del rotor con mandrino de aluminio con tensiones residuales y centrífugas.

8.2.2. Proceso de pretensado en un rotor con mandrino

Un rotor con mandrino se puede curar en dos etapas, de forma parecida al rotor de un solo material del apartado 8.1.3. En este caso el mandrino metálico, en estado sólido, supone una barrera de contención para el material en estado viscoso y provoca el pretensado de la fibra.

Para conseguir el efecto de pretensado en la primera distribución de temperaturas a se debe refrigerar la cara interior del rotor, como se representa en la figura 8.10. La temperatura en el mandrino es prácticamente constante porque el coeficiente de transmisión térmica del metal es muy superior al material compuesto. En ella queda cura la zona exterior, a partir del radio \(r_a \), porque se halla a una temperatura es superior a \(T_c \). La segunda distribución \(b \) es simple, se mantiene a una temperatura uniforme \(T_c \) para completar el curado de la zona intermedia, desde el mandrino \(r_2 \) hasta \(r_c \).

En la figura 8.10 se observa que después de la distribución de temperaturas a el rotor tiene tres capas: el mandrino metálico, la zona exterior curada y una zona intermedia todavía no curada. Así pues, la zona intermedia no solidificada queda retenida entre dos capas sólidas.
Figura 8.10: Rotor con mandrino curado en 2 etapas, a con refrigeración interior y b a temperatura uniforme.

Con el cambio de temperatura desde la distribución a hasta la b se generan unas tensiones muy especiales. El mandrino interior se calienta hasta \(T_c \) y tiende a dilatarse, mientras que la capa exterior se enfria y tiende a contraerse, con lo cual, se genera una presión \(p \) en la zona intermedia. A estas dilataciones hay que añadirle la dilatación del propio material no curado al calentarse hasta \(T_c \).

En este proceso es importante analizar el comportamiento del material no curado. Según los trabajos experimentales de bobinado citados en la sección 7.2.2, Hahn y Kempner (1993) [23], Kempner y Hahn (1995) [26] y Gabrys y Bakis (1998) [18], el material no curado, formado por la resina en estado viscoso y la fibra sólida, sufre una fluencia temporal muy importante cuando se somete a cargas. Por lo cual, se puede considerar que su comportamiento se aproxima al de un fluido viscoso, dentro de un límite de desplazamiento y con un movimiento lento. Este comportamiento se explica fácilmente si se considera que la resina puede fluir lentamente entre las fibras sólidas, hasta que predominan las fuerzas de presión hidrostática.

Si la capa intermedia del rotor se comporta como un fluido necesita un confinamiento lateral para mantener la presión \(p \). Esto se consigue cubriendo el rotor mediante dos tapas laterales, como se indica en el dibujo de la figura 8.10, que serán retiradas al completar el proceso de curado. Éstas se unen entre sí mediante algún elemento mecánico externo capaz de soportar la fuerza axial de la presión.

Durante la distribución b permanece la presión interna y con la solidificación de la zona intermedia se convierte en tensión residual de compresión. Finalmente, el rotor se enfria hasta la temperatura ambiente o final \(T_f \), igual que en el curado convencional, y el incremento de la tensión residual de esta etapa disminuye ligeramente la compresión final.
Con este proceso térmico se obtiene una tensión radial de compresión similar a la del pretensado por bobinado, con los mismos efectos favorables sobre las tensiones. A diferencia de aquél, las tensiones finales son permanentes porque se ha tenido en cuenta la solidificación del material. Es un proceso muy sencillo, se basa en la simple dilatación térmica, y fácil de aplicar, sólo necesita generar las temperaturas en los radios extremos. Los resultados obtenidos en el cálculo analítico son más fiables que en el bobinado porque se base en unos comportamientos del material bastante probados, aunque sería conveniente, antes aplicarlos a un rotor real, incluir una fase de experimentación.

Otra ventaja importante del pretensado térmico es la reducción de costes, ya que no es necesario incrementar los medios de fabricación, a excepción de un foco caliente y un foco frío para mantener la distribución de temperaturas. Su potencia térmica es pequeña porque el material compuesto tiene un coeficiente de transmisión de calor muy bajo.

8.2.3. Tensiones de pretensado en un rotor con mandrino

Las tensiones residuales del pretensado térmico se determinan sumando las tensiones de las dos etapas, igual que en el apartado 8.1.5. Cada una de ellas se calcula mediante el sistema multicapa del capítulo 6, en el que se considera que cada zona de curado es una capa distinta, porque sus propiedades son diferentes al menos durante una etapa.

Para el cálculo es necesario simular el comportamiento del material no curado, tanto las propiedades mecánicas como las térmicas. En el ejemplo del apartado 8.1.5, con una zona de material no curado, no ha sido necesario esta simulación porque el material no curado no interviene en la generación de las tensiones finales.

Para simular su comportamiento mecánico, sin necesidad de recurrir a las leyes de un fluido, se elabora un sistema equivalente que permite aplicar directamente las ecuaciones del capítulo 6. Para ello, se asignan al material unas propiedades elásticas ficticias que generan las mismas tensiones que un fluido, o sea, soporta la presión hidrostática y no crea tensiones cortantes internas. Esto se consigue aplicando un módulo elástico E muy bajo, pero conservando un coeficiente de compresibilidad volumétrica E_v igual que la mezcla fibra más resina.

La variación unitaria de volumen, $\Delta V/V$, en un fluido es función del coeficiente compresibilidad volumétrica E_v y la presión p, según la ecuación

$$\frac{\Delta V}{V} = E_v \ p$$

En un sólido isótropo de comportamiento elástico sometido a una compresión hidrostática el valor de $\Delta V/V$ depende del módulo elástico, del módulo de Poisson y de la tensión σ.

Luego, haciendo $p = \sigma$ se obtiene el coeficiente de compresibilidad volumétrica E_v

$$\frac{\Delta V}{V} = 3 \frac{1 - 2\nu}{E} \sigma \quad \rightarrow \quad E_v = 3 \frac{1 - 2\nu}{E} \quad (8.1)$$

Para la aplicación de esta ecuación se asigna el valor real de E_v y se eligen dos valores
ficticios para E y ν. Pero, para que simular un fluido del valor de E debe ser próximo a cero y, por lo tanto, ν debe ser próximo a 0.5. Hay que tener en cuenta que en esta simulación los valores de las propiedades son poco importantes para la precisión de las tensiones residuales.

En la simulación del material no curado se le asignan los mismos coeficientes de dilatación, α_L y α_T, que en el material sólido. La dilatación en la fibra es la misma porque permanece sólido y en la resina es muy parecida. Más adelante, en el apartado 8.4.2, se describirán algunos resultados experimentales de la dilatación de la resina epoxi. En ellos se comprueba que la dilatación que sufre la resina al calentarse desde la temperatura ambiente hasta la temperatura de curado, son muy parecidos si se halla en estado sólido y en estado fluido más su posterior curado.

En el ejemplo de cálculo se aplica un coeficiente compresibilidad volumétrica del material no curado de $E_v = 34,5$ MPa y se elige un valor $\nu = 0,499$, y ambos determinan por la ecuación 8.1 $E = 0,023$ MPa. Las dimensiones del rotor son las mismas que el ejemplo del apartado 8.2.1 y las temperaturas de curado son: $0^\circ C$ y $200^\circ C$ para la distribución a, $120^\circ C$ para la b y $20^\circ C$ para la temperatura final.

En la figura 8.11 se muestran las dos etapas: la primera etapa, con la distribución a queda curado a partir r_c^a y cambia a la distribución b, y en la segunda, con la distribución b se completa el curado y se enfriá hasta la temperatura final.

![Temperaturas, desplazamientos y tensiones residuales de un rotor con mandrino de las dos etapas de curado que genera pretensado térmico.](attachment:fig811.png)

En la etapa 1, con el cambio de temperatura de a a b, se genera la presión p de la zona no curada. El desplazamiento 1 del gráfico se crea por la acción simultánea de las tres capas,
el madrino se calienta de 0°C a 120°C y tiende a dilatarse (1 madrino), la capa sólida exterior se enfría y tiende a contraerse (1 exterior) y la capa intermedia, no curada, se adapta a la posición de las otras dos. Las tensiones σ_r y σ_θ son constantes e iguales a la presión p de 7 MPa. Con ello se comprueba que la simulación del estado fluido descrita en el apartado anterior aplicada a la zona no curada es correcta.

En la etapa 2 solamente se enfría de b hasta la temperatura ambiente y los incrementos de desplazamiento y tensiones son idénticos que en el curado a temperatura uniforme del apartado 8.2.1. La presión se reduce pero la tensión radial final sigue siendo de compresión, y su valor en el centro es de 5 MPa.

Con este proceso térmico se consigue un verdadero pretensado. Las tensiones de compresión, radial en la fibra y tangencial en el madrino, contrarrestan las tensiones de tracción inducidas por la fuerza centrífuga. En la figura 8.12 se comparan las tensiones y el factor de rotura del rotor sin el pretensado de la figura 8.9 con las del rotor pretensado y se comprueba que la mejora del mismo orden que en el modelo elástico del pretensado mecánico. Este cálculo analítico se puede realizar mediante un modelo de MEF basado en las mismas hipótesis y ha sido publicada en Ripoll y Pérez-Aparicio (2004) [43].

Figura 8.12: Variación de las tensiones y el factor de rotura en un rotor con mandrino sometido a pretensado térmico.

8.2.4. Aumento del pretensado térmico

La configuración del rotor semicurado de la etapa 1 en la figura 8.10, con material viscoso confinado, permite que la presión de pretensado se pueda aumentar de forma mecánica. La presión creada por sólo por dilataciones térmicas se puede incrementar desde el exterior a través de una sobrecarga en las tapas laterales.

Las tapas laterales de la figura 8.10 se sustituyen por otras más pequeñas que se adaptan al tamaño de la capa no curada, como se muestra en la figura 8.13, para empujar sólo la superficie fluida. La fuerza exterior F_z debe ser suficiente para mantener la presión térmica p, pero si es superior se genera una sobrepresión o presión mecánica, p_m.
El aumento de la fuerza exterior crea un pequeño desplazamiento axial debido a la compresibilidad del material no curado y la elasticidad de las dos capas sólidas. Las superficies laterales del rotor sufren una pequeña hendidura, a menos que se haya previsto durante el bobinado un pequeño resalte en esta zona que la compense.

Esta variante del pretensado presenta algunas incógnitas del comportamiento de las tensiones, por ejemplo los efectos de borde al retirar las tapas laterales o la relajación con el tiempo del exceso de tensiones residuales. Esta propuesta debería completarse con estudios más detallados, incluso, realizando ensayos experimentales para asegurar el comportamiento del material a presión y temperatura elevada. Por todo ello, en este trabajo no se aplica al cálculo final del rotor y se deja como una simple propuesta.

8.3. **Rotor de un solo material curado con pretensado térmico**

8.3.1. **Proceso de curado en tres etapas**

La técnica del pretensado térmico se ha mostrado eficaz en un rotor con mandrino metálico, dado que se aplica fácilmente y consigue una mejora importante. La presencia del mandrino metálico es esencial para crear la presión de pretensado; ofrece una superficie de contención y su coeficiente de dilatación térmica es muy favorable. En un rotor sin mandrino metálico, formado por un sólo material compuesto, también se puede generar un pretensado térmico, aunque el proceso es más laborioso y con resultados menos favorables.

Para crear el pretensado térmico en un rotor de un solo material se requieren tres etapas de curado. El proceso es similar al rotor con mandrino pero añadiendo una etapa previa para generar una capa sólida en el interior del rotor que sustituye al mandrino. En este caso, las dos capas de contención tienen el mismo coeficiente de dilatación y la diferencia de dilataciones es menor.

En la figura 8.14 se representan las tres etapas del curado de un rotor sin mandrino
8.3. ROTOR DE UN SOLO MATERIAL CURADO CON PRETENSADO TÉRMICO

8.3.1. Estructura del rotor de un solo material curado

La figura 8.14 muestra las etapas de curado para obtener un pretensado térmico en un rotor sin mandrino para generar un pretensado térmico. La primera etapa consta de una distribución de temperaturas a, con T_a^a superior a T_e^a para solidificar una capa interior hasta r_c^a, y el cambio a la distribución b. Las otras dos son idénticas que en el rotor con mandrino, en la segunda la distribución b crea la capa exterior, a partir de r_b^b, y cambia a la distribución c. Antes del cambio es necesario colocar las tapas laterales de contención para retener la presión p en la zona intermedia, generada por la dilatación de la capa interior y la contracción de la exterior. En este caso, la dilatación de la capa interior es menor que en el mandrino metálico y se crea una presión más baja. Finalmente, en la tercera etapa el rotor se enfria hasta la temperatura ambiente T_f.

8.3.2. Tensiones de pretensado en el curado en tres etapas

Las tensiones residuales se calculan como en los casos anteriores, acumulando las tensiones generadas en cada etapa. Para mostrar las tensiones se aplica al rotor de fibra de vidrio utilizado en los ejemplos de la sección 8.1. Las temperaturas interior y exterior en cada distribución son: en a de 160°C y 50°C, en b de 30°C y 200°C y la temperatura ambiente de 20°C. En la figura 8.15 se muestran los gráficos de temperatura, el desplazamiento y las tensiones después de cada etapa.

La primera etapa es muy parecida a la del ejemplo del curado en dos etapas del apartado 8.1.5 y sólo aparecen tensiones en la capa interna solidificada. En el desplazamiento, esta capa sólida interior arrastra el resto de material que todavía se halla en estado viscoso.

La segunda y tercera etapas son muy parecidas a las dos etapas del rotor con mandrino de la figura 8.11. En el cambio de b a c, como se muestra en el gráfico del desplazamiento, la capa interior tiende a dilatarse (2 interior) y la exterior a contraerse (2 exterior), y la presión p entre ambas las desplaza hasta la curva común 2. La presión p de 4 MPa es la misma en la tensión tangencial y en radial, y es inferior a la del rotor con mandrino (7 MPa). En la tercera etapa, con el curado total y el enfriamiento final, las tensiones...
Figura 8.15: Temperaturas, desplazamientos y tensiones residuales de las tres etapas de curado para el pretensado térmico de un rotor de material compuesto.

disminuyen y la compresión radial desciende hasta 2,5 MPa.

Con este ejemplo se comprueba que, a pesar de no disponer de un elemento metálico, es posible generar un pretensado térmico en un rotor de material único, aunque el resultado es menos favorable. Se podría aumentar aplicando el mismo sistema mecánico del apartado 8.2.4 para el rotor con mandrino y que no se analiza en este trabajo.

Para valorar la mejora final se somete a la velocidad límite del rotor sin pretensado determinado en el apartado 8.1.2. Los resultados a esta velocidad, 9681 rpm, se representan en la figura 8.16 y se comparan con los resultados del rotor sin pretensado de la figura 8.2. Se observa que la tensión radial ha disminuido y el factor de rotura ha mejorado hasta 0,87.

A pesar de conseguir tensiones de pretensado la mejora final es menor que en el rotor con mandrino. En el capítulo siguiente se estudiará más a fondo sus consecuencias sobre el diseño del rotor.
8.4. CONSIDERACIONES SOBRE EL PROCESO DE CURADO

8.4.1. Coeficientes de dilatación térmica

En todos los cálculos anteriores se han determinado las tensiones térmicas utilizando unos coeficientes de dilatación \((\alpha_L y \alpha_T)\) del material compuesto únicos, válidos para todas las temperaturas. Estos valores, tomados de la bibliografía, están obtenidos con el material solidificado y a temperaturas próximas a la temperatura ambiente. Todos los autores aplican estos valores y los utilizan para cualquier temperatura. Pero cabe preguntarse, si su valor se mantiene a temperaturas próximas al curado, o incluso, si son válidos para el material no curado.

Es conocido que el coeficiente varía con la temperatura y su valor es distinto cuando la resina no está curada. No obstante, su efecto es poco importante en el cálculo de rotores convencionales curados a temperatura uniforme. Pero, en el rotor curados por etapas, donde intervienen las dilataciones de la resina sin curar, la influencia de estos coeficientes puede ser importante.

En los cálculos de pretensado anteriores se ha supuesto que los valores son únicos, con el objetivo de simplificar la exposición. Se ha tenido en cuenta que su influencia sobre los resultados finales no modifica la tendencia de las tensiones de pretensado y, por lo tanto, lo expuesto hasta ahora es válido con algunas modificaciones en los valores.

Ahora, una vez descrito el proceso del pretensado, se complementa con el análisis de los coeficientes y su influencia sobre las tensiones residuales. Pero, este análisis no es exhaustivo, porque existe poca información sobre el comportamiento del material, por lo tanto, si se hubiese introducido al inicio del capítulo la exposición el proceso quedaría menos clara.

Figura 8.16: Variación de las tensiones y el factor de rotura en un rotor sometido a pretensado térmico.
A continuación se exponen algunas consideraciones deducidas de los resultados de algunos experimentos publicados sobre el comportamiento de la resina epoxi. Se deduce el posible comportamiento del rotor durante el curado por etapas y la influencia sobre las tensiones residuales. Es evidente que es necesario un estudio más a fondo, y sólo con una acertada experimentación se podrían obtener resultados fiables.

8.4.2. Dilataciones en el curado de la resina

La fibra no sufre ninguna modificación estructural durante el proceso de curado, solamente se dilata por el cambio de temperatura. Además, su influencia sobre las dilataciones globales del material es limitada porque el coeficiente térmico es mucho menor que en la resina.

Durante el proceso de curado la resina sufre un cambio químico y pasa de estado fluido a sólido. Este cambio de estructura interna comporta unas dilataciones que se suman a las propiamente térmicas y crean un ciclo que no se puede resumir en un simple coeficiente de dilatación.

Para entender las dilataciones de la resina epoxi durante el curado se expone el resultado de un ensayo de laboratorio publicado por Yates y otros (1979) [55]. En la figura 8.17 se reproduce de manera simplificada uno de los ejemplos de dilatación lineal de la resina en función del tiempo y en función de la temperatura. Se calienta una pequeña muestra de resina de 20 a 125°C, del punto A al B del gráfico, se mantiene a esta temperatura durante 100 minutos, desde B a C, y finalmente se enfría hasta 20°C, de C a D. En la primera fase, con la resina en estado fluido, se dilata, en la segunda, donde se produce la transformación química, se contrae y en la tercera en estado sólido continua la contracción.

![Figura 8.17: Dilataciones de la resina durante el curado en función del tiempo y la temperatura, Yates y otros (1979) [55]](image)

Para otros tipos de resina epoxi se observa la misma tendencia si bien con valores distintos. En este caso tienen una forma muy similar a la descripción genérica que realiza...
8.4. CONSIDERACIONES SOBRE EL PROCESO DE CURADO

Domininghaus (1993) [11], en el que se expone con más detalle las dilataciones reales en el curado de las resinas epoxi. En la figura 8.18 se reproduce de manera aproximada el gráfico que presenta el autor.

Este ciclo de Domininghaus es muy parecido los valores experimentales de Yates en el gráfico (b) de la figura 8.17. La resina en estado líquido se dilata con la temperatura a partir de 20°, punto A, donde se toma el origen de coordenadas de la dilatación. Las dilataciones en un proceso ideal para una resina que cura a 120° sigue el trayecto B₁, C₁, F y D que coincide con la figura 8.17. De B₁ a C₁ se realiza en cambio de fluido a sólido y la línea discontinua de los puntos en E₁ representa la separación teórica entre ambos estados. El cambio de pendiente en el punto F corresponde a la temperatura de transición vítrea de la resina.

Para el autor la dilatación final de la resina, después de completar el ciclo de curado, es prácticamente nula, o sea, considera que la diferencia entre A y D es despreciable. De ahí concluye que la resina epoxi no cambia de volumen al realizar el proceso de curado.

Domininghaus también observa que en un proceso real la fase de solidificación, de B₁ a C₁, no se realiza en condiciones totalmente isotérmicas. La reacción empieza antes de alcanzar la temperatura de 120°C, a partir de un punto B₂. Además, como la reacción es exotérmica, la temperatura interna de material sobrepasa la exterior y alcanza el punto C₂ por encima de 120°C. En los experimentos de laboratorio, Yates no observa este efecto porque la muestra de resina es muy pequeña y su temperatura coincide con la del baño exterior.

La pendiente de la recta DF corresponde al coeficiente de dilatación térmica de la resina en estado sólido. Su valor se utiliza para determinar los coeficientes del material compuesto, \(\alpha_L \) y \(\alpha_T \) definidos en el apartado 3.1.1, utilizados en todos los cálculos.
Aunque, según Domininghaus, el material tiene las propiedades de sólido a partir del punto E_2, muy posiblemente su rigidez es todavía insuficiente para evitar la relajación de las tensiones residuales. En este sentido, los artículos de Lee y Springer (1990) [32] y [33], citados en el apartado 8.1.4, consideran que la resina se comporta como un material sólido a partir de un grado de curado del 60%, sin embargo, determinan las tensiones residuales solamente cuando la resina está totalmente curada, o sea, se mantienen a partir del punto C_2.

En la relajación de las tensiones residuales, además del grado de curado, puede intervenir también la variación de las propiedades de la resina con el aumento de la temperatura. Por ejemplo, la rigidez radial de un material compuesto varía con la temperatura según los estudios de Bolotin y Bolotina (1972) [3] y Kostritskii y Tsirkin (1981) [29], expuesto en Tarnopol’skii y Beil (1983) [48]. Estos efectos no están estudiados para el caso de la relajación de tensión y sería necesario realizar experimentos para conocer su comportamiento exacto.

8.4.3. Influencia de las dilataciones sobre el pretensado térmico

De los gráficos anteriores se deduce que las dilataciones que intervienen en el proceso de curado son muy superiores que las determinadas mediante los coeficientes de dilatación de valor único, α_L y α_T, de los apartados anteriores. El valor de la dilatación en los puntos B_1 o B_2 de la figura 8.18 es más del doble de las del material sólido de la recta DF. Pero, si se analiza detalladamente el proceso mecánico del pretensado se observa que su influencia sobre las tensiones residuales es mínima.

![Diagrama simplificado para el estudio de la influencia de las dilataciones de curado en el pretensado](image.png)
8.4. CONSIDERACIONES SOBRE EL PROCESO DE CURADO

En la figura 8.19 se presenta un gráfico simplificado para analizar la influencia de estas dilataciones sobre las tensiones de pretensado. Para ello, se supone que el incremento de temperatura debido a la reacción exotérmica es despreciable y se sigue la línea vertical B_1 C_1. Además, se considera, igual que en Lee y Springer (1990), que las dilataciones de la transformación química no generan tensiones residuales permanentes.

Si en el rotor la capa de material no curado no está confinada, como sucede en la figura 8.4, la dilatación de la resina no genera tensiones porque se expande libremente. En cambio si está confinada, como en las figuras 8.10 y 8.14, la diferencia de dilataciones entre la resina fluida y la sólida de la figura 8.19 modifica las tensiones residuales. En este caso, la dilatación del estado fluido en la recta AB_1 es superior a la dilatación del sólido en la recta DF, y el valor de la presión p, calculado para esta última, será mayor.

Este incremento de presión es momentáneo porque en el punto B_1 empieza el proceso de curado y la resina se contrae. El exceso de dilatación de la recta AB_1 se contrarresta con la contracción en la línea de curado B_1 C_1, aunque no siempre por igual porque el valor de la dilatación varía con la temperatura de la resina fluida al inicio de la etapa de presión. Por ejemplo, si se aplican las temperaturas de la figura 8.11 al gráfico de dilataciones de la figura 8.19 se deduce que el valor medio de la dilatación es parecido al valor de la contracción. Por lo tanto, el aumento de presión queda anulado, o al menos muy disminuido, por la contracción del curado.

Por otra parte, la resina sólida tiene un pequeño incremento de dilatación, entre C_1 y F_1, debido cambio de pendiente en la temperatura de transición vítrea, pero es poco importante. Lo mismo ocurre con la dilatación entre el punto inicial A y final D.

De todo ello se concluye que las dilataciones reales de la resina en estado viscoso y durante el curado no modifican sustancialmente los resultados de las tensiones residuales de pretensado calculadas anteriormente. A pesar de ello, antes de aplicarlo a un rotor habría que analizar más a fondo el comportamiento de la resina, incluso, realizar algún ensayos de laboratorio porque los diagramas de dilataciones son distintos para cada tipo de resina.
Capítulo 9

DISEÑO DE VOLANTES DE INERCIA

9.1. Rotores simples

9.1.1. Condiciones del estudio

En este capítulo no se pretende realizar el diseño completo de un volante de inercia porque intervienen otros elementos no estudiados. Su objetivo es analizar la parte del volante que almacena la energía, o sea la masa del rotor distribuida en forma cilíndrica. Ni siquiera se incluyen las otras partes del rotor como el eje central para el apoyo de los cojinetes ni la unión de este con el cilindro.

La masa cilíndrica del rotor es la parte central del volante y de su configuración dependen todos los demás elementos. Aquí se pretende determinar los límites de almacenamiento de energía de las distintas configuraciones y hallar las formas óptimas de rotor para ser aplicadas luego al diseño de volantes de bajo coste.

Dentro de las configuraciones se estudian las formas geométricas del rotor y algunos aspectos de su proceso de fabricación, en cambio, no se incluye el estudio de los materiales. Se utilizan solamente materiales más comunes en la fabricación de rotores y, además, que sean representativos. Las conclusiones genéricas de este trabajo se pueden rehacer fácilmente para otros materiales más específicos, con mejores propiedades. También se pueden aplicar a otras configuraciones, con más capas o combinando otros materiales.

Para el estudio del diseño del rotor se analiza en primer lugar la influencia del espesor de pared sobre el rendimiento energético, luego se comparan con las propuestas de mejora estudiadas en los capítulos anteriores, la estructura en multicapa y el pretensado.

Los diseños se valoran bajo el objetivo principal, comentado en el capítulo 1, de obtener un rotor de bajo coste, aunque se cuantifican también la masa y el volumen.

Para los ejemplos se eligen los siguientes materiales: acero AISI 4130, aluminio 7075, fibra de vidrio Scotch/epoxi y fibra de carbono T300/2500. Los valores de las propiedades de
los cuatro se muestran en la tabla 9.1, donde se añade el uretano, ya que se utiliza como complemento en algunas aplicaciones. Las propiedades que dependen de la orientación de la fibra incluyen la dirección, L para longitudinal y T para transversal.

<table>
<thead>
<tr>
<th>Propiedad y dirección</th>
<th>Acero 4130</th>
<th>Aluminio 7075</th>
<th>F. vidrio(^1) Scotch/epoxi</th>
<th>F. carbono T300/2500</th>
<th>Uretano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mód. elástico L(^2) (GPa)</td>
<td>210</td>
<td>70</td>
<td>38.6</td>
<td>130</td>
<td>0.015</td>
</tr>
<tr>
<td>Mód. elástico T(^3) (GPa)</td>
<td>210</td>
<td>70</td>
<td>8.27</td>
<td>9.0</td>
<td>0.015</td>
</tr>
<tr>
<td>Mód. de Poisson TL</td>
<td>0.30</td>
<td>0.33</td>
<td>0.26</td>
<td>0.30</td>
<td>0.48</td>
</tr>
<tr>
<td>Mód. de Poisson TT</td>
<td>0.30</td>
<td>0.33</td>
<td>0.60</td>
<td>0.52</td>
<td>0.48</td>
</tr>
<tr>
<td>Rígidez torsional LT (GPa)</td>
<td>80.8</td>
<td>26.9</td>
<td>4.14</td>
<td>4.55</td>
<td>0.005</td>
</tr>
<tr>
<td>Densidad (kg·m(^{-3}))</td>
<td>7860</td>
<td>2700</td>
<td>1800</td>
<td>1600</td>
<td>1034</td>
</tr>
<tr>
<td>Res. tracción L (MPa)</td>
<td>1050</td>
<td>450</td>
<td>1062</td>
<td>1800</td>
<td>41</td>
</tr>
<tr>
<td>Res. compresión L (MPa)</td>
<td>1050</td>
<td>450</td>
<td>610</td>
<td>1400</td>
<td>41</td>
</tr>
<tr>
<td>Res. tracción T (MPa)</td>
<td>1050</td>
<td>450</td>
<td>31</td>
<td>80</td>
<td>41</td>
</tr>
<tr>
<td>Res. compresión T (MPa)</td>
<td>1050</td>
<td>450</td>
<td>118</td>
<td>168</td>
<td>41</td>
</tr>
<tr>
<td>Res. cortante LT (MPa)</td>
<td>664</td>
<td>231</td>
<td>72</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>Coef. dil. térmica L (10(^{-6})/°C)</td>
<td>11.7</td>
<td>23.0</td>
<td>8.6</td>
<td>-0.3</td>
<td>233</td>
</tr>
<tr>
<td>Coef. dil. térmica T (10(^{-6})/°C)</td>
<td>11.7</td>
<td>23.0</td>
<td>22.1</td>
<td>28.1</td>
<td>233</td>
</tr>
<tr>
<td>Coef. dil. humedad L (%(^{-1}))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coef. dil. humedad T (%(^{-1}))</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
<td>-</td>
</tr>
</tbody>
</table>

(Tabla 9.1)

9.1.2. Rotores de pared delgada

Un rotor cilíndrico de pared delgada es la forma más simple para el análisis de tensiones. La diferencia entre los radios extremos, \(r_e\) y \(r_i\) del rotor mostrado en la figura 9.1, es pequeña y la velocidad angular \(\omega\) crea una velocidad lineal \(v\) igual en todos los puntos, de manera que toda la masa contribuye por igual a la energía cinética. Además, las tensiones son uniformes en toda la sección y el cálculo es muy simple. Por lo cual esta configuración se toma como referencia para el análisis de otros diseños.

La energía cinética \(E_c\) almacenada en el rotor de pared delgada se aproxima a la energía de una única masa sometida a una velocidad lineal uniforme \(v\). En su interior sólo se genera tensión tangencial, \(\sigma_\theta\), el resto de componentes son nulas, y su valor es proporcional al cuadrado de la velocidad. Luego, la energía almacenada en el rotor depende sólo de la resistencia del material en la dirección circunferencial.

La energía cinética y la tensión tangencial de un cilindro de pared delgada se obtienen a partir de las siguientes expresiones simples

\[
E_c = \frac{1}{2} V \rho \ v^2 \quad ; \quad \sigma_\theta = \omega^2 \ r^2 \rho
\]

\(^1\)Con las fibras orientadas en una sola dirección.
\(^2\)Longitudinal (L) a la orientación de las fibras.
\(^3\)Transversal (T) a la orientación de las fibras.
así pues, la energía cinética es función sólo del volumen \(V \) del material y tensión tangencial \(\sigma_\theta \)

\[
E_c = \frac{1}{2} V \sigma_\theta
\]

(9.2)

En esta expresión se demuestra que la energía cinética de un rotor de pared delgada es independiente de la masa y de la densidad del material. Si la masa es pequeña la fuerza de inercia es menor y admite una velocidad de giro más alta, por lo tanto, se compensan.

El diseño de un rotor de pared delgada es muy simple, basta con aplicar la ecuación 9.2. Si se comparan los resultados para una determinada geometría de los materiales básicos de la tabla 9.1 se compueba, comparando las resistencias, que los materiales compuestos tienen una capacidad de energía igual o superior a los metales.

En algunas aplicaciones interesa maximizar la energía por unidad de masa, o densidad de energía, como se ha comentado en el capítulo 1. El valor para un rotor de pared delgada se obtiene dividiendo los dos términos de la ecuación 9.2 por la masa

\[
\frac{E_c}{m} = \frac{1}{2} \frac{\sigma_\theta}{\rho}
\]

(9.3)

En los rotores de pared delgada la densidad de energía depende sólo de la resistencia a tracción y de la densidad. Si se comparan los materiales básicos de la tabla 9.1 se comprueba que los materiales compuestos son mucho mejores que los metales porque su densidad es mucho menor. En la tabla 9.2 se muestra los valores de densidad de energía para los materiales de la tabla 9.1.

<table>
<thead>
<tr>
<th></th>
<th>Acero</th>
<th>Aluminio</th>
<th>F. vidrio</th>
<th>F. carbono</th>
</tr>
</thead>
<tbody>
<tr>
<td>4130</td>
<td>7075</td>
<td>Scotch/epoxi</td>
<td>T300/2500</td>
<td></td>
</tr>
<tr>
<td>Densidad de energía (kJ·kg⁻¹)</td>
<td>67</td>
<td>83</td>
<td>295</td>
<td>562</td>
</tr>
</tbody>
</table>

(Tabla 9.2)

En otros tipos de rotores, distintos a los de pared delgada, las ecuaciones 9.2 y 9.3 no son
tan simples. En Genta (1985) [19] se hace un estudio a fondo de la relación de la energía por unidad de masa para diversas configuraciones del rotor.

Los rotores de pared delgada pueden alcanzar un nivel de energía por unidad de masa muy elevado pero necesitan un espacio grande, a causa del volumen interior inutilizado. En algunas aplicaciones, donde se busca además de una masa reducida un volumen ocupado mínimo, es necesario recurrir a los rotores de pared gruesa.

9.1.3. Rotores de pared gruesa y material único

Los rotores de pared gruesa tienen un comportamiento más complejo que los de pared delgada. Ni las tensiones ni la velocidad son uniformes, cada punto tiene su propia resistencia y aporta una energía cinética distinta. Pero lo más destacable es la influencia de la tensión radial sobre la resistencia del rotor, que en algunos casos llega a ser más importante que la propia tensión tangencial.

El análisis del diseño se realiza sobre un caso concreto, del cual se mantienen siempre constantes las dimensiones exteriores del rotor y sólo se modifica el radio interior, r_i en la figura 9.2. En los próximos apartados también se modifica la configuración de los materiales y el proceso de fabricación, pero siempre con formas parecidas a las utilizadas en los ejemplos de capítulos anteriores, de manera que se facilita la comparación. Las dimensiones comunes son el radio exterior r_e de 0.5 m y la longitud axial de 1 m. Se utilizan sólo los cuatro materiales de la tabla 9.1, dos metales y dos materiales compuestos, porque son suficientes para observar las líneas principales de diseño. Los dos diseños en material compuesto tienen las fibras orientadas a 0°, curan a una temperatura común de 120°C y la temperatura ambiente final es de 20°C.

El primer análisis se realiza sobre la velocidad lineal. En este caso, el valor constante v del rotor de pared delgada en la figura 9.1 se sustituye por la velocidad periférica v_e, en el radio exterior r_e del rotor de la figura 9.2. Su valor se utiliza como parámetro de referencia en este primer análisis, teniendo en cuenta que en los puntos interiores la velocidad es inferior.

Su valor máximo está limitado por la resistencia del material, igual que en el rotor de

\[v_e \]
pared delgada, pero en el rotor de pared gruesa depende también del radio interior r_i. En la figura 9.3 se muestran la variación del valor límite la velocidad periférica v_e en función de la relación de radios, r_i/r_e, para el caso de rotores de material único. En el cálculo se utilizan las ecuaciones del capítulo 6 y se aplica un factor de rotura, según el criterio de Christensen, igual a la unidad.

![Figura 9.3: Velocidad periférica v_e máxima admisible para distintos materiales en función de la relación r_i/r_e.](image)

En la figura 9.3 se observa que los rotores de compuesto admiten una velocidad más elevada que los metálicos, sobre todo para en los rotores de r_i/r_e grandes, o sea, de espesor de pared pequeño. Partiendo de un rotor de pared delgada, al aumentar el espesor de pared, la velocidad aumenta ligeramente para los cuatro materiales. En el caso de los metales esta tendencia se mantiene hasta espesores pequeños, pero para los materiales compuestos cambia bruscamente en un punto. Su velocidad admisible disminuye rápidamente a partir de un valor r_i/r_e o un punto de cambio, como se aprecia en la figura 9.3, y en espesores muy grandes su valor llega a ser comparable al de los metales.

Cabe destacar que el rotor de fibra de vidrio utilizado en los ejemplos de los capítulos anteriores, con $r_e = 0.5$ y $r_i = 0.3$ m, corresponde al punto $r_i/r_e = 0.6$ situado en la zona de pendiente negativa. Si se hubiese tomado un valor de $r_i/r_e = 0.75$ los resultados hubieran sido muy distintos, pero su comportamiento tendría menos interés para el estudio.

Este fenómeno es de notable interés para el diseño de rotores de materiales compuestos. Esto mismo está descrito en Genta (1985) [19], aunque mediante otros parámetros. En este punto de inflexión o cambio de tipo de rotura, los rotores de pared delgada rompen por tensión tangencial pero los de pared gruesa rompen por tensión radial, tal como se ha descrito en el capítulo 6.
Figura 9.4: Tensiones y factor de rotura de tres rotores de fibra de vidrio con relación de radio r_i/r_e cercano al punto de máxima velocidad periférica

Para visualizar el cambio de tipo de rotura en la figura 9.4 se presentan los gráficos de tensiones y factor de rotura para los tres rotores de fibra de vidrio próximos al punto de cambio, correspondientes a los tres valores de r_i/r_e, 0.72, 0.75 y 0.80, representados sobre la curva de la fibra de vidrio de la figura 9.3. En el gráfico de las tensiones, igual que en los gráficos del capítulos anteriores, se representan simultáneamente los valores de σ_θ, σ_r y σ_z, las dos últimas con un factor de escala diez.

La forma del gráfico de tensiones es muy parecida a la figura 6.3 del apartado 6.1.5 y la del factor de rotura a la figura 6.15. Ahora el factor de rotura máximo para los tres casos es igual a 1, tal como se ha impuesto en el cálculo para obtener la velocidad la máxima permisible. Si se comparan los tres rotores se observa que la curva del factor de rotura en el caso $r_i/r_e = 0.80$ tiene el valor máximo en r_i a causa de la tensión tangencial, en cambio en los otros dos el máximo está en el centro a causa del fallo a tensión transversal ocasionado por σ_r y σ_z. Esto explica el cambio de pendiente brusco de la curva en el punto $r_i/r_e = 0.75$, en el cual el gráfico del factor de rotura tiene simultáneamente dos máximos de valor unitario, $r = r_i$ y en el centro.

Con este ejemplo se concluye que en los rotores de material compuesto con fibra orientada a θ^0 la velocidad máxima decae bruscamente a partir de un cierto espesor de pared debido a la baja resistencia transversal del material. El espesor de pared de este punto varía para cada tipo de material compuesto y depende de sus propiedades mecánicas: la densidad, la elasticidad, la resistencia, etc.

A partir del gráfico de velocidad máxima, figura 9.3, se determina la energía cinética de la figura 9.5. Su valor es cero en $r_i/r_e = 1$ y aumenta con el espesor de la pared porque aumenta la masa del rotor. Al principio de la curva, en espesores pequeños, el rotor de fibra de carbono presenta los mejores resultados, el de fibra de vidrio y el de acero son muy parecidos y el de aluminio tiene una energía muy inferior. Las diferencias
entre los materiales compuestos y los metales del gráfico de velocidades se compensan por la mayor densidad de estos últimos. A partir del punto de cambio las curvas de los materiales compuestos varían su tendencia, igual que en el gráfico de velocidad, y los valores para espesores grandes llegan a ser inferiores que para el caso de los metales.

En Genta (1985) [19] se cuantifica esta perdida de energía de los materiales compuestos, pero se valora mediante un parámetro distinto. Se define un factor de forma que incluye simultáneamente la energía máxima y la resistencia del material. Esta información es equivalente porque el gráfico de la figura 9.5 se ha determinado a partir de la resistencia.

9.1.4. Criterios de optimización

Para el diseño óptimo de rotores no es suficiente con tener en cuenta los parámetros de velocidad máxima o de energía cinética, es necesario aplicar parámetros más globales. Estos dependen de las condiciones de diseño según el tipo de máquina, por ejemplo, en acumuladores aplicados a satélites interesa que la masa sea mínima, en cambio en acumuladores estáticos para el suministro eléctrico el peso no es importante.

En este sentido, aquí se van a estudiar tres condiciones o variables de diseño: la masa, el volumen ocupado y el coste. En cada caso se aplica la más importante según el uso del volante, aunque también se pueden aplicar varias de ellas con un orden de preferencia. Para cuantificar estas variables se usan valores unitarios: energía por unidad de masa, o densidad energía, energía por unidad de volumen y energía por unidad de coste. El diseño óptimo es el que consigue un valor más elevado en uno o varios de estos tres parámetros.
Éstas tres variables están citadas en Danfelt y otros (1977) [9], aunque la más estudiada en los últimos tiempos ha sido la densidad de energía, por ejemplo en Gabrys y Bakis (1998) [17] o Ha y otros (2001) [22], quizás debido a las aplicaciones espaciales. La densidad tiene unas aplicaciones limitadas, en cambio la condición sobre el coste es mucho más universal, interviene en mayor o menor grado en todas las aplicaciones de los volantes. Pero su estudio es más complejo que la densidad porque depende de más factores, por ejemplo del material, la fabricación, los accesorios utilizados, el mantenimiento, etc.

La densidad de energía se obtiene dividiendo los valores del gráfico de energía de la figura 9.5 por la masa del cilindro, y se representa en la figura 9.6. No se tiene en cuenta la masa de las otras partes del rotor como el eje, etc. Los valores de los puntos de \(r_i/r_e \) próximos a la unidad coinciden con los valores de densidad de energía para el rotor de pared delgada de la tabla 9.2, obtenidos mediante la ecuación 9.3. Estos valores disminuyen si el espesor de pared aumenta, o sea para relaciones de \(r_i/r_e \) menores, en los metales varían lentamente en todo el gráfico, pero en los dos materiales compuestos sufren un descenso brusco a partir del punto de cambio. Los valores para el rotor de aluminio son algo superiores a los del acero debido a su menor densidad.

La fibra de carbono es siempre tiene valores superior a la fibra de vidrio, debido a su mayor resistencia. En espesores pequeños, en puntos de \(r_i/r_e \) cercanos a la unidad, los materiales compuestos son muy superiores a los metales, pero en espesores grandes descienden y se son del mismo orden que los metales. El punto de cambio de los materiales compuestos tienen el mismo valor \(r_i/r_e \) en los gráficos anteriores.

De la figura 9.6 se concluye que los mejores resultados en la densidad de energía se obtienen con los materiales compuestos pero con una limitación importante a partir de
un cierto espesor de pared. El valor de r_i/r_e del punto de cambio define el límite en el espesor de los rotores simples de materiales compuestos.

Figura 9.7: Energía máxima por unidad de volumen ocupado en función del radio interior r_i.

La energía por unidad de volumen ocupado se determina dividiendo los valores de la figura 9.5 por el volumen ocupado, entendido éste como el volumen de la máquina inutilizado por el volante. Se calcula sumando el volumen del propio material más el volumen interior, o sea el volumen encerrado por la superficie exterior. En algunas aplicaciones este espacio puede contener el motor eléctrico y habría que modificar esta definición.

Los resultados se presentan en la figura 9.7. La forma de los gráficos y la relación entre ellos coinciden con los de energía total a causa de las condiciones de cálculo, se mantienen constantes el diámetro exterior y longitud y, por lo tanto, también el volumen encerrado.

Un rotor de material compuesto según la variable de volumen ocupado tiene muy poca ventaja sobre los rotores metálicos, también para espesores reducidos. En cambio, el de acero, que en la densidad de energía era el peor, ofrece muy buenos resultados.

El cálculo de la energía por unidad de coste puede ser muy complejo, como se ha comentado anteriormente. Aquí para simplificar se cuantifica solamente el coste del material del cilindro, no se contabilizan las partes del rotor ni los gastos de fabricación. No cabe duda que para afrontar un estudio sobre rotores de bajo coste sería imprescindible considerar cada uno de ellos y añadir los costes de los elementos auxiliares del rotor.

El coste del material del rotor se determina de forma simple, a partir del precio por unidad de peso. Además, para el análisis comparativo de diversas configuraciones de este trabajo es suficiente con disponer de la relación entre el precio de los cuatro materiales. Para que la relación de precios sea fiable se obtienen de una única fuente, el artículo de
Flanagan (1986) [14], cuyo autor se dedica a la fabricación de volantes de inercia con estos materiales. Aunque la fecha es algo antigua se supone que la relación entre los precios ha variado poco. Los valores utilizados para los cuatro materiales, expresados en $/kg, son: acero 3.3, aluminio 9.3, fibra de vidrio 8.1 y fibra de carbono 38.5.

Los resultados de energía por unidad de coste se muestran en la figura 9.8. La valoración de los materiales es ahora muy distinta de los gráficos anteriores, en espesores reducidos el más favorable es la fibra de vidrio, seguido por el acero. En espesores grandes los valores de los dos materiales compuestos decurren y el acero es claramente el mejor.

Este gráfico es interesante para el objetivo propuesto al inicio, en el apartado 1.2.3, sobre el diseño de rotores de bajo coste, de forma que los resultados de los siguientes apartados que requieren un cálculo de optimización se realizan en función de la energía por unidad de coste, si se realizase con los otros parámetros el resultado sería algo distinto.

Para valorar las mejoras de las configuraciones estudiadas en este capítulo se comparan los resultados con los gráficos de la figura 9.8 de rotores simples de un solo material. Entre ellos el más interesante es el rotor de fibra de vidrio porque ofrece el mejor resultado y por esta razón desde el capítulo 2 se ha elegido para todos los ejemplo de cálculo.

Las propuestas de mejora se basan en las técnicas desarrolladas en los capítulos anteriores. En primer lugar se aplica la estructura multicapa del capítulo 6 y una variante consistente en alternar capas de material elástico en el rotor de material compuesto. También se aplica el pretensado térmico en un rotor de fibra de vidrio simple y con mandrino. En cambio, no se aplica el pretensado en el bobinado porque, como se ha descrito en el capítulo 7, hacen falta datos experimentales que es escapan de los objetivos de este trabajo.
9.2. Rotores multicapa

9.2.1. Optimización de un rotor de dos capas

Para aumentar la capacidad de almacenamiento de energía en rotores de material compuesto de grandes espesores se utilizan los rotores multicapa, descritos en el apartado 6.2.4. Su objetivo es disminuir la tensión radial, como se ha comentado en la figura 6.11.

Figura 9.9: Rotor de gran espesor con dos capas con un \(r_2 \) que optimiza la energía.

Aquí se estudia solamente un caso sencillo de dos capas, utilizando el material de fibra de vidrio y de carbono de la tabla 9.1. Aunque es un caso sencillo es suficiente para observar las mejoras del método multicapa.

Figura 9.10: Tensiones y factor de rotura del rotor de dos capas con \(r_i/r_e = 0.6 \) y \(r_2/r_e = 0.85 \) que optimiza la energía. Las curvas 0.84 y 0.86 sólo tienen un punto igual a la unidad.

La dimensiones exteriores son las mismas que en los apartados anteriores, \(r_e = 0.5 \) y \(l = 1 \) m. La fibra de carbono se sitúa en el exterior y la fibra de vidrio en el interior, tal como se representa en la figura 9.9, para que la elasticidad sea progresiva. El radio \(r_2 \) de
separación entre las capas se determina por optimización, o sea para cada \(r_i \) se calcula el valor de \(r_2 \) da lugar a la máxima energía por unidad de coste.

En la figura 9.10 se presenta un ejemplo de dicha optimización. Se aplica al rotor de \(r_i = 0.3 \) m, o sea \(r_i/r_e = 0.6 \), utilizado en los ejemplos de los capítulos precedentes y la solución es \(r_2 = 0.425 \) m, \(r_2/r_e = 0.85 \). Este valor no coincide con el rotor mejorado del apartado 6.3.4 de idénticas dimensiones y con los mismos materiales porque la condición de optimización es distinta.

En la figura 9.10 se presentan las tensiones y el factor de rotura para el radio óptimo \(r_2/r_e = 0.85 \) en trazo negro y en el gráfico del factor de rotura se incluyen también las curvas de color para dos radios próximos, uno anterior, \(r_2/r_e = 0.84 \), y otro posterior, \(r_2/r_e = 0.86 \). Se observa que la curva del radio óptimo tiene dos máximos iguales a la unidad, en cambio los otros tienen un solo punto igual a la unidad. Si se compara la situación de estos dos puntos del gráfico de \(r_2/r_e = 0.85 \) con el gráfico de tensiones se deduce que el valor máximo de la izquierda coincide con los valores máximos de la tensión axial y radial y el de la derecha con el máximo de la tensión tangencial.

En la optimización de otros puntos \(r_i/r_e \) no tiene porque cumplirse que existan dos puntos máximos del factor de rotura iguales a la unidad, como en la figura 9.10, el valor máximo depende de otros factores que distorsionan esta forma ideal.

![Figura 9.11: Curva de energía por unidad de coste para rotores de dos capas optimizados.](image)

9.2.2. Resultado del rotor de dos capas

Si el calculo del apartado anterior se repite para otros valores \(r_i/r_e \), cada uno de ellos con un valor de \(r_2 \) que optimiza la energía por unidad de coste, se obtiene la curva de
la figura 9.11. También se incluyen las curvas de los rotores simples de fibra de vidrio y fibra de carbono de la figura 9.8 para comparar los resultados.

En la figura 9.11 se observa que la curva del multicapa sólo existe para puntos inferiores a \(r_i / r_e \simeq 0.7 \), en los superiores el valor óptimo de \(r_2 \) es superior a \(r_e \) y la capa de fibra de carbono es nula. Por lo tanto, la combinación de una capa de fibra de vidrio con una de fibra de carbono solamente mejora los resultados de energía por unidad de coste en rotores de grandes espesores.

El rotor de dos capas nunca supera el máximo absoluto de energía por unidad de coste del rotor fabricado solamente de fibra de vidrio. Los valores mejoran en rotores de espesor grande, donde el valor inicial es muy bajo. Presenta también un punto de cambio de pendiente (A), en \(r_i / r_e = 0,466 \), muy similar a la curva de material único, y corresponde también a un cambio de tipo de rotura.

Cada uno de los rotores multicapa determinados para la figura 9.11 le corresponde un valor de densidad de energía y de energía por unidad de volumen. Estos se representan en la figura 9.12, en donde se incluye también las curvas del rotor de una sola capa para comparar los resultados.

![Figura 9.12: Densidad de energía y energía por unidad de volumen de un rotor con dos capas.](image)

En el gráfico de la densidad de energía de la figura 9.12(a) se observa que a partir del punto de origen, en \(r_i / r_e \simeq 0.7 \), la densidad aumenta hasta el valor máximo en el punto de cambio (A), \(r_i / r_e = 0,466 \). Es interesante observar que en espesores grandes la curva del multicapa supera a la curva de la fibra de carbono, aunque el máximo queda por debajo de los valores absolutos para espesor pequeños.

La curva de energía por unidad de volumen ocupado de la figura 9.12(b), es similar a la anterior pero el máximo es más acentuado y su valor supera el máximo absoluto del rotor de fibra de carbono. Este punto máximo (A), de cambio importante de pendiente, es muy singular y es interesante conocer su causa.
En la figura 9.13 se presentan las tensiones y el factor de rotura para el punto A, en el cual \(r_i/r_e = 0.466 \) y \(r_2 = 0.332 \). El factor de rotura, en trazo negro, tiene tres puntos máximos, dos de ellos coinciden con la unidad y el tercero está muy próximo. Al igual que en la figura 9.10 se añaden dos curvas correspondientes dos valores de \(r_2 \) próximos, uno superior y otro inferior, para deducir la evolución de rotura. Se observa que en el inferior el factor de rotura se produce en la capa de fibra de carbono, causada por la tensión tangencial y la tensión radial simultáneamente, y en el superior se produce en la fibra de vidrio, causada por la tensión radial.

Con este ejemplo se deduce que el rotor de dos capas no mejora la energía por unidad de coste en valores absolutos, aunque sí para espesores grandes. La densidad de energía aumenta mucho más aunque tampoco en valor absoluto y la energía por unidad de volumen es claramente superior. Se debe tener en cuenta que el diseño se ha optimizado para los costes, si se hubiese optimizado para otra condición el aumento sería superior.

![Figura 9.13: Tensiones y factor de rotura del punto de cambio (A). Se añaden las curvas del factor de seguridad de \(r_2 \) anterior y posterior al valor óptimo.](image)

Si el rotor multicapa no se limitase a dos capas o se hubiesen elegido dos materiales más compatibles entre sí, los resultados de densidad y energía por unidad de volumen serían claramente mejores. El resultado de la energía por unidad de coste dependería del precio unitario de los nuevos materiales.

9.2.3. Rotor con capa elástica

Otra forma de aumentar la energía sin incrementar apenas el coste del material es incluir en el interior del rotor una o varias capas de material elástico. Es una variante del rotor multicapa, con capas gruesas de material resistente y capas finas de material elástico sin fibras. Esta técnica ya ha sido utilizada por Gabrys y Bakis (1997) [17]. En la figura 9.14 se muestra un rotor de dos capas de fibra de vidrio separadas por una capa de uretano.
Las ventajas se muestran mediante un ejemplo basado en el rotor de fibra de vidrio del apartado 9.1.3 al que se añade una capa de uretano, como se muestra en la figura 9.14. La posición y el espesor de la capa, o sea \(r_2 \) y \(r_3 \), se determinan mediante la optimización de la energía por unidad de coste, igual que para \(r_2 \) en el apartado anterior.

En la figura 9.15 se presentan los resultados de la energía por unidad de coste en la curva \(F_v + U + F_v \), junto con las curvas iniciales. También se incluyen algunos resultados del rotor con dos capas de uretano que se designa como \(F_v + U + F_v + U + F_v \). La posición de las dos capas también se determina mediante el proceso de optimización anterior.

En rotores de espesor pequeño, con \(r_i/r_e \) cercanos a la unidad, el resultado no varía respecto al rotor sin capa elástica mientras que en espesores grandes el aumento es im-

Figura 9.14: Rotor con una capa de material elástico.

Figura 9.15: Modificación de la curva de energía por unidad de coste de un rotor de fibra de vidrio al introducir una o dos capas de material elástico.
El valor máximo no mejora, simplemente se desplaza el punto de cambio de pendiente, de \(r_i/r_e = 0.75 \) disminuye a 0.68.

Los resultados del rotor de dos capas elásticas se limitan a tres puntos porque el cálculo es más complejo. A pesar de ello los puntos se encuentran en la zona más representativa y determinan el punto de cambio de pendiente. El valor de \(r_i/r_e \) disminuye a 0.65, con lo que el espesor del rotor puede ser mayor.

![Figura 9.16: Tensiones y factor de rotura en el punto de cambio \((r_i/r_e = 0.65)\) de un rotor con dos capas de uretano después del cálculo optimizado.](image)

El cálculo de optimización para dicho rotor presenta cuatro grados de libertad o variables, dos radios para cada capa elástica. En la figura 9.16 se presenta el resultado de las tensiones y del factor de rotura. Para este caso en el gráfico de tensiones se muestran los cuatro radios de cambio de material y en el del factor de rotura se observa que está optimizado, el valor es igual a la unidad en cuatro puntos simultáneamente (A, B, C y D) y en el quinto (E) está muy próximo.

En la figura 9.17 se presentan la densidad de energía y la energía por unidad de volumen para esta solución y se comparan con el rotor de fibra de vidrio. En ambos se observa que para espesores pequeños la energía no aumenta mientras que para espesores grandes el incremento es importante. El valor máximo absoluto no mejora en la densidad de energía y tiene un ligero aumento en la energía por unidad de volumen.

En los tres gráficos se observa que la inclusión de capas elásticas retrasa la caída de la resistencia al aumentar el espesor, prolongando los valores altos de la curva de material único a rotores de mayor espesor.

Si se comparan las mejoras obtenidas por el sistema multicapa y el sistema de la capa elástica se observa que el primero ofrece mejores resultados en la densidad de energía y en la energía por unidad de volumen, en cambio, con el segundo se obtienen mejores resultados en la energía por unidad de coste.
9.3. Rotores con pretensado térmico

9.3.1. Rotor de fibra de vidrio

La energía almacenada en los rotores de un solo material del apartado 9.1.3 se puede incrementar aplicando el pretensado térmico del capítulo 8 sin apenas aumentar apenas el coste de fabricación.

A modo de ejemplo se aplica al rotor de fibra de vidrio para obtener un valor de energía por unidad de coste más elevado. El curado a 120°C se sustituye por el curado por etapas con pretensado térmico de la sección 8.3. Las temperaturas interior y exterior, en °C, de cada distribución son: (a) 140/100, (b) 0/220, (c) 120/120 y ambiente 20/20, y se aplican independientemente del espesor de pared del rotor. En la figura 9.18 se representan los gradientes para el caso de $r_i = 0.3$ m ($r_i/r_e = 0.6$).
El rotor adquiere las tensiones residuales descritas en la sección 8.3, en el que la tensión radial residual es negativa y permite que la velocidad límite sea más elevada. Las tensiones se calculan solamente con el coeficiente de dilatación térmica convencional igual que en la sección 8.3, aunque en realidad podría ser algo distinto según se ha comentado en la sección 8.4.

La energía máxima almacenada en el rotor pretensado es superior que en el rotor convencional de la figura 9.8. En la figura 9.19 se presenta el valor de energía por unidad de coste del rotor de fibra de vidrio pretensado y se compara con la del rotor convencional. Se observa que la energía aumenta en todos los puntos de r_i/r_e a excepción de espesores muy delgados donde no llegan a generarse tensiones de pretensado. El incremento no es muy importante, aproximadamente de un 10% para $r_i/r_e = 0,9$ y un 40% para $r_i/r_e = 0,2$, aunque en este último el valor en curado convencional es extremadamente bajo.

También aumenta la densidad de energía y la energía por unidad de volumen como se observa en la figura 9.20. El incremento es similar al incremento del gráfico de energía por unidad de coste porque sin modificar la masa ni el volumen se mejora la resistencia.

Con este ejemplo se comprueba que la mejora de las prestaciones de un rotor de material compuesto mediante el pretensado es poco importante. En la práctica puede ser algo superior debido a la dilatación producida durante el proceso químico de curado descrito en la sección 8.4. Este resultado se podría mejorar si se sustituyera la resina convencional por una que tuviese un coeficiente de dilatación térmica superior.

Figura 9.19: Aumento de la energía por unidad de coste en un rotor con pretensado térmico.
9.3. Rotores con pretensado térmico

9.3.2. Rotor de fibra de vidrio con mandrino

Un rotor con mandrino de bobinado puede disminuir los costes de fabricación como se ha comentado en el apartado 1.2.4. A continuación se estudia un rotor de este tipo aunque no se incluye el coste de fabricación y, por lo tanto, el resultado no es directamente comparable con los que no tienen pretensado térmico. Si se fabrica con un curado convencional la energía máxima es muy baja, pero si se aplica el pretensado térmico de la sección 8.2 ésta aumenta mucho.

Figura 9.20: Aumento de la densidad de energía y energía por unidad de volumen aplicando un pretensado térmico.

Figura 9.21: Distribuciones de temperatura en un rotor de \(r_i = 0.3 \) m curado con pretensado.

En el ejemplo se aplica a un rotor de la fibra de vidrio con un mandrino de aluminio curado en dos etapas, con temperaturas interior y exterior en cada distribución: (a) 0/220°C, (b) 120/120°C y temperatura ambiente 20°C. En la figura 9.21 se muestra el gradiente de temperatura generado para el caso de \(r_i = 0.3 \) m (\(r_i/r_e = 0.6 \)).
Figura 9.22: Curvas de energía por unidad de coste del rotor de aluminio más fibra de vidrio con y sin pretensado.

En la figura 9.22 se muestran los resultados de la energía máxima por unidad de coste y se compara con los resultados anteriores del rotor de fibra de vidrio y de aluminio de la figura 9.8. Se incluye también el resultado de un rotor con mandrino curado a 120°C para mostrar el aumento de las prestaciones conseguidas en el pretensado térmico. Ígual que en los rotores de varios materiales de los apartados anteriores en todos los casos se determina el espesor de pared del aluminio mediante un cálculo de optimización de la energía por unidad de coste.

El rotor de aluminio más fibra de vidrio sin pretensado tiene una resultado muy bajo como se observa en figura 9.22, su valor es inferior al rotor de aluminio e inferior al de fibra de vidrio. Además, para valores de \(r_i/r_e \) inferiores a 0.4 el espesor del aluminio es inferior a 1 mm y el resultado coincide con el rotor de fibra de vidrio. Lo mismo para valores superiores a 0.66 donde la fibra de vidrio se minimiza y coincide con el rotor de aluminio.

El resultado del rotor pretensado es superior al rotor de fibra de vidrio para espesores grandes. Para espesores pequeños, \(r_i/r_e > 0.6 \), el resultado es inferior, aunque en esta zona el espesor de aluminio no llega a 1 mm y no tiene sentido real. A pesar de obtener un incremento pequeño de la energía por unidad de coste se debe recordar que se comparan únicamente los costes del material, si se añaden los costes de fabricación el resultado del rotor de fibra de vidrio serían más bajo.

En los gráficos de densidad de energía y energía por unidad de volumen de la figura 9.23 se observa que la variación con respecto al rotor de un solo material es muy similar al gráfico del coste. Para espesores grandes se consigue un pequeño incremento. Únicamente cabe resaltar que la curva del rotor de aluminio y fibra de vidrio sin pretensado tiene un
Figura 9.23: Aumento de la densidad de energía y energía por unidad de volumen de un rotor con mandrino aplicando un pretensado térmico.

Salto en \(\frac{r_i}{r_e} = 0.65 \). Esto es debido al cambio de material. A partir de este punto, el rotor pasa a ser totalmente de aluminio, según el cálculo de optimización del coste, y en la figura 9.22 la curva es continua.
CAPÍTULO 9. DISEÑO DE VOLANTES DE INERCIA
Capítulo 10

CONCLUSIONES

10.1. Sistema analítico de cálculo

En este trabajo se ha desarrollado un sistema analítico de cálculo para rotores muy completo. Se han previsto los tipos de cargas que deben tenerse en cuenta durante el diseño: la fuerza centrífuga, la fuerza de aceleración y las tensiones residuales, térmica y de hidratación. Para estas dos últimas se resuelven casos especiales de distribuciones radiales no uniformes de temperatura y humedad. Se analizan todas las componentes de la tensión y se determinan las tres componentes normales y dos componentes cortantes, la tercera es nula en los rotores.

En el cálculo de tensiones se aplican las condiciones de tensión plana, utilizado por la mayoría de autores, y se amplía con el cálculo en condiciones de deformación axial constante que es una variante mejorada de la deformación plana. El primero es aplicable a los puntos situados cerca del extremo axial y el segundo se utiliza para los puntos muy lejanos. Sus resultados son excelentes, comparados con los obtenidos en modelos de elementos finitos, y se comprueba que son mejores que los resultados del cálculo en tensión plana. Ambos sistemas son aplicables simultáneamente, la tensión plana para puntos situados en el extremo libre del rotor y la deformación axial constante para puntos interiores.

Estos sistemas simples se amplían mediante un nuevo procedimiento de cálculo que está libre de condiciones restrictivas y permite determinar las tensiones en cualquier punto del rotor. Para ello, se deduce una función aproximada para la tensión axial y la tensión cortante radial-axial en función del radio y la posición axial. Dicha función permite desarrollar un sistema unificado de cálculo, en que los sistemas de tensión plana y de deformación axial constante son casos particulares de un sistema global, capaz de determinar las tensiones de un punto situado en cualquier posición axial. Este nuevo sistema tiene una formulación analítica relativamente sencilla y se adapta muy bien a los resultados de algunos ejemplos obtenidos mediante elementos finitos.

El sistema unificado de cálculo se complementa con diversas particularidades del rotor: se desarrolla una aplicación para el cálculo de rotores multicapa, se deducen las ecuaciones
específicas para los materiales singulares, en los cuales las ecuaciones generales no son válidas, y se prevé el cálculo de rotores con capas de fibras orientadas axialmente que actúan de refuerzo en configuraciones especiales.

En el análisis de las tensiones generadas en el proceso de fabricación se deduce un sistema de cálculo para determinar las tensiones residuales de bobinado y a la vez, se desarrolla un proceso de cálculo paralelo mediante elementos finitos basado en la simulación de las vueltas de bobinado. En ambos sistemas, a pesar de ser distintos, se obtienen unas tensiones prácticamente coincidentes. Además, permiten simular, hasta ciertos límites, el bobinado de materiales no curados con propiedades viscoelásticas.

Esta simulación de materiales viscoelásticos se aplica, junto con el modelo multicapa, para determinar las tensiones residuales generadas en el curado por etapas. Ello permite estudiar los resultados de la optimización a través del pretensado térmico.

10.2. Diseño de volantes de inercia

En el diseño de volantes, atendiendo la diversidad de aplicaciones, se establecen tres variables de diseño distintas: la masa, el volumen y el coste del material. A cada campo de aplicación se le puede asignar una variable de optimización propia, en este trabajo se han considerado las aplicaciones que necesitan optimizar la energía por unidad de coste.

En el análisis de la configuración de los rotores se ha estudiado en primer lugar el límite de los rotores simples, de un solo material, variando la relación entre radio interior y exterior. Se aplica a los materiales que se consideran básicos: el compuesto de fibra de carbono con matriz epoxi, el compuesto fibra de vidrio con matriz epoxi, el aluminio y el acero. Cada uno se analiza bajo las tres variables de diseño y se comprueba que los materiales compuestos ofrecen mejores prestaciones que los metales. La fibra carbono es superior en la densidad de energía y en la energía por unidad de volumen, mientras que la fibra de vidrio es superior en la energía por unidad de coste. Pero ambos casos las variables sufren una notable descenso en los rotores con una relación de radios inferior a un determinado valor, debido a la falta de resistencia transversal a la fibra.

Estos resultados se utilizan para valorar tres nuevas configuraciones desarrolladas a partir de los estudios analíticos anteriores. Se pretende contrarrestar los efectos de la falta de resistencia transversal y, con ello, aumentar la energía por unidad de coste o, al menos, evitar su descenso en los rotores con una relación de radios pequeña.

Si al rotor de fibra de vidrio se añade una capa de fibra de carbono, formando la configuración típica en multicapa, la energía por unidad de coste aumenta ligeramente pero solamente en los rotores con una relación de radios pequeña. Si se le añade una capa de material elástico diminue el valor de la relación de radios en que se produce el descenso, ampliando la gama de rotores de altas prestaciones. Si se sustituye el curado convencional por el curado con pretensado térmico aumenta la energía por unidad de coste para cualquier relación de radios, aunque el aumento es pequeño.

Finalmente, el sistema de análisis de las tensiones residuales de bobinado permite des-
cubrir las causas de los resultados experimentales negativos de otros autores y proponer una nueva estrategia de fabricación que disminuye la relajación de tensiones y favorece el pretensado.

10.3. **Futuras líneas de investigación**

Durante la elaboración de esta tesis han surgido nuevas propuestas de estudio que permiten abrir nuevas líneas de investigación para completar el sistema de cálculo y seguir avanzando en el diseño de los volantes. Entre ellas se pueden destacar las siguientes:

- Completar el sistema de cálculo mejorando las funciones de la tensión axial y la tensión cortante radial-axial del capítulo 4 y aplicarlas al estudio de configuraciones particulares de rotores donde su valor puede ser más significativo. Además, cualquier modificación en las ecuaciones habría que incorporarla al sistema general del capítulo 6 para que el cálculo se realizara de forma directa.

- Continuar los estudios de pretensado, tanto a través del bobinado, capítulo 7, como del pretensado térmico, capítulo 8, aplicando otros materiales y realizando ensayos experimentales, porque los resultados que aquí se han presentado están limitados a unos ejemplos simples de aplicación. Los datos utilizados están obtenidos de la bibliografía pero necesario conocer a fondo las propiedades de los materiales, en situaciones particulares de presión, temperatura, grado de curado, etc. Posteriormente, habría que comprobar los resultados del cálculo en rotores reales.

- Completar el estudio sobre los sistemas de mejora del diseño del capítulo 9 incorporando nuevos materiales y nuevas geometrías. Para ello será imprescindible disponer de una tabla completa de datos, con las propiedades mecánicas y térmicas, costes, etc. y obtenidos bajo las mismas condiciones para que los resultados sean comparables. Es muy probable que los datos de la bibliografía no ofrezcan garantías de que se cumplan estas condiciones, en cuyo caso habrá que recurrir a los ensayos experimentales.

- Incorporar los valores unitarios de energía almacenable según la masa, el volumen y el coste a un sistema automático de optimización y toma de decisiones. Se deberá definir un parámetro global mediante la suma ponderada de los tres valores unitarios. Dicha ponderación será distinta para cada tipo de máquina, de manera que el rotor óptimo será específico para cada aplicación.
Bibliografía

[24] Herbst J. D., Manifold S. M., Murphy B. T.; Desingn, Fabrication and Testing of 10 MJ Composite Flywheel Energy Storage Rotors; Center for Electromechanics, The University of Texas at Austin

[52] Tzeng J. T., Pipes R. B.; *Thermal and Residual Stress Analysis for In-Situ and Post Consolidated Composites Ring*; Composites Manufacturing. 3(1992), p. 273-279

